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Abstract 
 

 This research is an extension to the research conducted by K. Leka and G. Barnes of 

the Colorado Research Associates Division, Northwest Research Associates, Inc. in Boulder, 

Colorado (CORA) in which they found no single photospheric solar parameter they 

considered could sufficiently identify a flare-producing active region (AR).  Their research 

then explored the possibility a linear combination of parameters used in a multivariable 

discriminant function (DF) could adequately predict solar activity. 

The purpose of this research is to extend the DF research conducted by Leka and 

Barnes by refining the method of statistical discriminant analysis (DA) with the goal of 

selecting those photospheric magnetic parameters most capable of identifying flare-

producing active regions in hopes of increasing the reliability of short term flare warnings 

and the understanding of flare production.  The data for this research were photospheric 

vector magnetograms captured by the Imaging Vector Magnetograph (IVM) at the University 

of Hawai`i Mees Solar Observatory at Haleakala and provided by CORA.  Increasing the 

data set size was an essential task for this research in order to have a more statistically 

significant training sample for DA.  This research also modified current DF procedures to 

enable the customization of the costs of flare false alarms and flare misses.  Work was also 

done to expand the binary DF results to produce flare probability forecasts.  The selection of 

the optimum combination of photospheric magnetic parameters to be used as predictors in a 

linear DF began with the elimination of redundant parameters and those parameters least 

likely to contribute to flare production.  The selection of parameters was governed by 

maximizing the Mahalanobis distance in a step-up method.  The DF results show a pre-

flaring active region may be characterized by larger magnetic flux, an active region with a 

larger area of magnetic shear angle greater than 80˚, larger current of heterogeneity, larger 

spatial vertical magnetic field gradient, and a larger kurtosis of the shear angle. 

 With the optimum combination of parameters, DF flare probability forecasts were 

compared to the daily forecasts produced by the National Oceanic and Atmospheric 

Administration, Space Environment Center (NOAA SEC).  The Chi-Squared values of each 

forecast show the objective DF based flare probability forecasting method performs as well 

as the subjective forecasting method employed by the SEC. 
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CUSTOMIZATION OF DISCRIMINANT FUNCTION  
ANALYSIS FOR PREDICTION OF SOLAR FLARES 

 
 
 

1.  Background 

 

1.1  Introduction 

 

With the dawn of modern technology came mankind’s introduction to space 

weather and the ever-changing solar environment, and with each passing year, the 

variety of technologies affected by the products of solar activity increases.  These 

technologies are critical components in many systems which provide services the 

majority of us rely on in our daily lives such as telecommunication, commercial 

airlines, electrical power, wireless services, and terrestrial weather tracking and 

forecasting.  Government agencies and military operations have also seen a dramatic 

increase in their dependence on space-based systems.  These systems are vital to 

activities such as search and rescue operations, air traffic control, navigation and 

guidance control, satellite attitude control, and homeland defense.  Unfortunately, an 

increase in solar activity or a solar energetic event, such as a solar flare, can have 

disastrous effects on these systems and can hinder routine services, governmental 

procedures, and critical military operations.   

New uses for space-based technologies are continually being discovered, and 

more and more technologies are moving to space-born platforms.  In light of the 

accelerating space-based era, it is more important than ever we understand and can 

forecast and predict solar flare events whose effects can reach Earth in a matter of 
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minutes, with little to no warning.  Presently, there are agencies which publish daily 

and short-term flare probability forecasts that rely on subjective visual interpretations 

of solar active region (AR) magnetic complexity and evolution and McIntosh 

classification.  It is the purpose of this research to explore discriminant analysis as an 

objective method of flare prediction and forecasting using data derived from an AR’s 

photospheric magnetic field. 

 

1.2  Our History with Space Weather 

 

 One of the inventions which helped bring about the era of modern technology, the 

telegraph, is also the technology to introduce mankind to the reality that activity on 

the sun influences Earth’s electromagnetic characteristics [Song, 2001].  As telegraph 

communication increased in the late 1840’s, it often fell victim to anomalous currents 

that at times would disrupt telegraph communication completely.  Also during this 

time, a solar observer, Richard Carrington, was tracking an exceptionally large 

sunspot group and extreme auroral displays were widely seen.  One of the first to 

study the anomalous current, W. H. Barlow, wrote in 1849, “in every case which has 

come under my observation the telegraph needles have been deflected whenever 

aurora has been visible” [Song, 2001]. 

The same mechanism that produced the abnormal current in the telegraph system 

in the 1800’s can wreak havoc on today’s power, fuel, and telecommunication lines 

and finds its origin in solar activity.  Enormous amounts of solar radiation are 

absorbed by the Earth’s magnetosphere and ionosphere, greatly increasing near-Earth 
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current systems.  The enhanced, highly dynamic magnetospheric and ionospheric 

current systems lead to large variations in the time rate of change of the magnetic 

field at the Earth’s surface, inducing potential differences across large areas of the 

surface.  Earth-bound power, fuel, and telecommunication lines grounded to the Earth 

provide an excellent path for current to flow between the induced potential 

differences.  Such a sudden flow of current through lines can be ruinous to power 

supplies and communications. 

A magnetic storm in February 1958 was responsible not only for disrupting voice 

communications over the first cross-Atlantic telecommunications cable, but was also 

responsible for rendering Toronto’s power systems temporarily unavailable.  In 1972 

a magnetic storm resulted in an hour-long outage of a major continental 

telecommunications cable from Chicago to the west coast.  The entire province of 

Quebec fell victim to a magnetic storm in March 1989 when a major transformer 

failed due to induced surface potentials and power was unavailable for an entire day.  

This same storm nearly destroyed the first trans-Atlantic fiber voice cable when 

potential differences were established between cable terminals in New Jersey and 

England [Song, 2001]. 

In May 1998 we witnessed how widespread the impact of solar activity can be on 

our technologies.  The previous examples of the crippling effects of solar activity 

were regional or localized; however, an epoch of solar flares in 1998 greatly disrupted 

the space around Earth and affected the entire North American continent.  The 

electromagnetic energy and high-energy particles spewed towards Earth by the solar 

flares rendered a communications satellite inoperable.  The Galaxy IV satellite 
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provided over 90 percent of North America’s paging service and relayed radio and 

television signals [Carlowicz, 2002].  During that time doctors and nurses across the 

nation could not receive their pages and Americans were forced into a world before 

television and radio.   

Another area vulnerable to solar activity with extensive, and even global, reach is 

the airline industry.  A solar event can adversely affect the entire spectrum of air 

travel technologies.  The surge of solar activity in March and April 2001 caused 

disruption and blackouts of radio signals and led to more than 25 flights being 

diverted in order to avoid flying through polar regions where communication was 

nearly impossible and passengers could have been exposed to as much solar radiation 

as that of 100 chest x-rays.  Radio signals used to identify aircraft were disrupted, and 

navigation via the Global Positioning System (GPS) was not reliable.  Consequently, 

planes were incapable of landing in low visibility conditions [Carlowicz, 2002]. 

The military, police, and fire emergency agencies rely heavily on high frequency 

(HF) and transionospheric wireless communication.  HF technology uses the 

ionosphere to reflect radio signals.  However, solar activity can alter ionospheric 

reflective properties and, thus, alter the propagation of wireless signals.  In 1979, at 

the peak of the 21st solar cycle, the Orange County, California fire department 

experienced such an effect.  The department received a distress signal from a downed 

commuter plane and responded only to determine later the signal had originated in 

West Virginia [Song, 2001].  The military has also come to rely on wireless 

communication during operations for real-time decisions and intelligence.  
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Consequently, lives, outcomes of battles, and our national defense depend on the 

ability to know when HF communications are available. 

Many of the events accompanying and products of solar flares, such as 

radiowaves, X-rays, and relativistic protons, travel at or close to the speed of light.  

Consequently, by the time such radiation is observed, their effects are already being 

felt near or on Earth, and the method of now-casting is inadequate for issuing the 

desired several-hours warning of the arrival of such radiation.  With the diversity and 

numbers of users of space-based technologies that are susceptible to the effects of 

solar activity growing and with the speed at which some products of solar flares reach 

the Earth, the need for a robust method to predict solar flare events is evident.  An 

objective and reliable flare prediction system is crucial for protecting satellites and 

astronauts from excess radiation, space-born hardware from shortened lifetimes, 

space-born communication and navigation systems from failure, and warning of 

possible high frequency radio transmission blackouts. 

 

1.3  Active Region Evolution 

 

 A solar flare, a type of solar event that can greatly affect space weather, is a 

localized explosive release of energy from the sun’s atmosphere in the form of 

electromagnetic radiation and energetic particles.  It is generally accepted the energy 

to produce solar flares is the stored magnetic energy of active regions (ARs), areas 

where the solar magnetic field departs from the simple dipole model.  In these regions 

field lines are concentrated, and the situation is highly unstable.  If a “trigger” occurs 
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to “tap” this stored energy via relaxation of the magnetic field lines, a solar flare 

results. 

   Active regions are locations of intense concentrations of magnetic flux.  Present 

theory on AR evolution assumes the undisturbed and initial solar global magnetic 

field is a weak poloidal field.  The theory also assumes the solar plasma 

conductivities are large and solar magnetic field lines are frozen-in, meaning the solar 

plasma and field lines move together with the same velocity.  Furthermore, the sun, as 

a gaseous body, experiences differential rotation.  Plasma at the solar equator rotates 

with a period of roughly 25 days per revolution whereas plasma at the poles takes 

nearly 32 days to complete a rotation.  Due to the frozen-in nature of the solar 

magnetic field lines, this differential rotation distorts the initial poloidal field and, 

over time, transforms the initial magnetic field into a toroidal field (see Figure 1.1).  

  

Figure 1.1 - Solar Magnetic Field Evolution from a Poloidal Field to a Toroidal Field, 

[http://solar.physics.montana.edu/hurlburt/] 
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 As the differential rotation continues, the magnetic field lines become more 

twisted and coiled and magnetic flux tubes become buoyant and emerge above the 

photospheric surface (see Figure 1.2).  Convective forces below the photosphere 

continue to act on the plasma and add further twist to the emerging flux tubes.  The 

areas where the flux tubes break the photospheric surface correspond to observed 

sunspots within ARs. 

 

Figure 1.2 - Emerging Flux Tube and Sunspot Group within an AR 

  

 

1.4  Present Solar Flare Theory 

 

 As plasma flow and convection continue to twist and stretch solar magnetic field 

lines, excess energy is built up in the field.  Thus, the magnetic field deviates further 

from a potential field, which is the field configuration of lowest energy.  The field 

lines become more and more stressed as the twisting and stretching continues.  The 
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field lines can only withstand a finite amount of pressure and tension, and if field 

lines cross, a threshold is reached, or an instability arises, a solar flare may result.  

A solar flare can result due to the relaxation of a complex, non-potential magnetic 

field.  Relaxation of stressed magnetic field lines can explosively release enormous 

amounts of stored energy.  During magnetic relaxation, stored magnetic energy is 

converted to particle kinetic energy, thermal energy, and electromagnetic energy of a 

flare.  A type of relaxation that often occurs near AR neutral lines is reconnection and 

is shown in Figure 1.3.  Neutral lines separate vertical magnetic field lines of opposite 

polarity in an AR and are areas where flares are frequently observed.  Although 

reconnection occurs in the chromosphere, it is thought the stress mechanism of solar 

flares takes place in the photospheric magnetic field.   

          

     
 

Figure 1.3a – Magnetic field lines        
of opposite polarity prior to 
reconnection  

       Figure 1.3b – Magnetic field lines of 
opposite polarity come into 
contact 

        Figure 1.3c – Reconnection and 
relaxation of magnetic 
field lines, the dash line in 
the center represents zero 
magnetic field where two 
lines of opposing 
polarities came into 
contact and cancelled one 
another 
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The impulsive energy release of a solar flare can be close to 1025 Joules [Tascione, 

1994].  Solar flares can last from a few minutes to a few hours, and the output 

radiation covers the spectrum from radio waves to gamma-rays.    

 

1.5  Classification of Solar Flares 

 

 Solar flares can be classified according to area or size, their intensity in the visible 

wavelengths, and total X-ray emission.  These characteristics are good indicators of 

the amount of energy released in the form of electromagnetic radiation and particle 

emissions [55th SWXS, 1997].  

 Importance is a measure of an optical flare’s area or size at the time of maximum 

intensity in Hα.  A unit often used to describe flare area is one millionth of the visible 

solar hemisphere, which is approximately equal to 3 million square kilometers.  

Another unit used is hemispheric square degree which is roughly equivalent to 48.5 

hemispheric millionths.  Table 1.1 summarizes Importance classification. 

        Table 1.1 - Solar Flare Importance Classifications 

 Flare Area 

Importance Designator 
Hemispheric        

Square Degrees 
Millionths of 
Hemisphere 

0 0 – 2.0 10 – 99 

1 2.1 – 5.1 100 – 249 

2 5.2 – 12.4 250 – 599 

3 12.5 – 24.7 600 – 1199 

4 ≥ 24.8 ≥ 1200 
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Another classification generally appended to the Importance numeral designator 

is Brightness (see Table 1.2).  An optical flare’s Brightness is a quantitative term 

describing the intensity of the flare at ± 0.4Å, ± 0.6Å, and ± 1.0Å off the Hα line 

center as compared to background intensity.  If the area does not brighten to at least 

150% of the background, it is only considered to be a plage fluctuation [55th SWXS, 

1997]. 

 

Table 1.2 - Optical Flare Brightness Classifications 

Brightness Designator Brightness (% of Background) 

F (Faint) 150% - 259% 

N (Normal) 260% - 359% 

B (Brilliant) ≥ 360% 
 

 

 Flares are also classified according to their peak X-ray flux within the 1-8Å band, 

as measured by Geostationary Operational Environmental Satellites (GOES).  Sensors 

aboard GOES measure solar x-ray flux.  See Figure 1.4 for an example of GOES data 

for M- and X-class flares on 12 July and 14 July 2000. 

 

            Table 1.3 - X-ray Flare Classifications 

Class X-Ray Flux (watt/m2) 

C 610−  –  6109 −×

M 510−  –  5109 −×

X ≥  410−
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Figure 1.4 - GOES X-Ray Flux Data 

 

 

1.6  McIntosh Classification Scheme 

 

Sunspot classification schemes were developed in an attempt to identify those 

regions likely to produce flares.  The original Zurich classification scheme 

categorized spot groups into nine classes based on visual characteristics and was 

developed by M. Waldmeier in 1938.  In 1966, Patrick McIntosh built upon the 

Zurich Scheme and developed the McIntosh classification system which is used 

today.  The McIntosh system assigns to an AR a three-letter designator.  The first 

letter of the classification describes the group type or the unipolar and bipolar nature 

of the spot group.  The second letter describes the penumbra of the largest spot in the 

group, and the third describes the compactness of the spots in the intermediate part of 
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the group.   See Figures 1.5 and 1.6 and Tables 1.4 and 1.5 for examples and 

descriptions of the McIntosh classes. 

 

 
Table 1.4 - The First Letter of the McIntosh Classification Scheme

  

Modified Zurich Classes 

 
A – a unipolar group with no 
penumbra 
 
B – a bipolar group with no 
spots having a penumbra  
 
C – a bipolar group with 
penumbra on one end of the 
group 
 
D – a bipolar group of less 
than 10 degrees in length with 
penumbrae on spots at both 
ends of the group 
 
E – a bipolar group of length 
10-15 degrees with 
penumbrae on spots at both 
ends of the group 
 
F – a bipolar group of greater 
than 15 degrees with 
penumbrae on spots at both 
ends of the group 
 
H – a unipolar group with 
penumbra 

 
Figure 1.5 - Modified Zurich Classes 

 
* The First Letter of the McIntosh   
Classification Scheme is also the 
Modified Zurich Classes 
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Figure 1.6 - McIntosh Sunspot Group Classification 
 
 
Table 1.5 – Second and Third Classes within McIntosh Classification Scheme 

 
Second Letter 

 
x – no penumbra, only used for 
classes   A and B 
 
r – rudimentary penumbra 
 
s – small and symmetric spot 
 
a – small and asymmetric spot of 
diameter 2.5 degrees or less with 
irregular or separated penumbra 
 
h – large symmetric spot of diameter 
greater than 2.5 degrees 
 
k – large asymmetric spot of 
diameter greater than 2.5 degrees 

  
Third Letter 
 
x – single spot, unipolar group of 
Modified Zurich Classes A or H 
 
o – open distribution with few, if any, 
small spots between the leading and 
following spots 
 
i – intermediate distribution with 
numerous umbral spots between the 
leading and following spots 
 
c – compact distribution with many 
spots between the leading and 
following spots, at least one of the 
intergroup spots has penumbra 
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1.7  SEC’s Flare Forecasting Method 
 

 The National Oceanic and Atmospheric Administration Space Environment 

Center (NOAA SEC) produces daily short-term flare probability forecasts based on 

the McIntosh Classification Scheme for users in government, industry, and the private 

sector [Gallagher, 2005].  The SEC assigns separate probability forecasts for M- and 

X-class flares and for the time intervals of 24, 48, and 72 hours.  The forecasts are 

computed based on many factors including an active region’s McIntosh 

Classification, the region’s previous activity, and its present evolution.   

At the SEC, publishing a flare probability forecast begins with comparing the 

most complex and largest ARs present on the solar disk to previous active regions of 

the same McIntosh Classification.  The SEC database of past active regions to which 

the current ARs are compared spans the dates of November 1988 to June 1996.  An 

initial flare probability forecast is obtained based on the fraction of similarly 

classified ARs in the database that produced at least one flare.  The probability 

equation used in SEC’s flare prediction method is governed by previous studies of 

flare production rates and Poisson statistics [Gallagher, 2005].   

Poisson statistics can be applied to counting experiments in which independent, 

random events are observed at a definite average rate [Taylor, 1997].  Previous 

studies have shown the nature of flare occurrences and flare rate distributions with 

respect to a given peak flux value can be modeled according to Poisson statistics.  

SEC’s forecasting method relies on previous research that suggests the rate of flare 

production on the solar disk varies with time and the rates of flaring can be modeled 

as a piecewise Poisson process [Wheatland, 2001].  SEC’s forecasting method also 
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relies on previous work done by Hudson [1991] which suggests the distribution of 

flare production rate versus peak flux value for the solar disk obeys the power law 

with an index ξ ≈ 1.8.  According to Wheatland [2001], the distribution of flare 

production rate versus peak flux given by 

)1()( )1( −ΦΦ=Φ −− ξλ ξξ
ooN    (1.1). 

With the known observation of No flares with a peak flux of at least Φo , λo is the flare 

production rate equal to (No/t), where t is the period of observation [Wheatland, 

2001].   

Wheatland [2001] then suggests that the current rate of flaring can be determined 

from the time history of observed flare production.  From equation 1.1, if the current 

rate of flare production oλ  above a threshold peak flux of oΦ  is determined, then the 

rate of flaring 1λ  above the peak flux of 1Φ is given by 

    
1

1
1

+−

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
Φ
Φ

=
ξ

λλ
o

o     (1.2) 

[Wheatland, 2001].  Assuming flare production can be modeled as a piecewise 

Poisson process and the most current flare production rate xλ  can be determined from 

the recent history flare observations, the probability of observing at least one flare 

with a peak flux greater than Φx within the time interval ∆t is given by 

         (1.3) t
x

xetP ∆−−=∆ λ1)(

[Wheatland, 2001].  It is from equation 1.3 that SEC derives the probability equation 

used in its flare forecasting method [Gallagher, 2004].   
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SEC’s forecasting method assumes flare events are independent and obey the 

equations above.  For example, let us assume an AR of McIntosh Classification, Eai, 

is observed and is the largest and most complex AR on the solar disk.  According to 

the SEC database, 302 ARs between the dates of November 1988 and June 1996 were 

of the same class, Eai, and produced a total of 62 M-class events.  Thus, the fraction 

of Eai regions that produce M-class flares is 62/302 or 0.205, and the corresponding 

flare production rate is λ=0.205 flares per observed Eai region.  The probability the 

Eai region will produce at least one flare in the following 24 hours is   

  or  ]205.0[1 −−= ExpP 19.0=P , where day1∆t =  [Gallagher, 2005].  

The SEC forecaster would then further refine the initial quantitative 19% flare 

probability forecast according to his/her previous experiences and visual 

interpretations of the structure and status of the AR.  Taken into account would be the 

region’s current evolution and past history of producing flares [Wheatland, 2004].   

As a way to follow how well the forecasts compare to observed flare activity, 

SEC maintains a flare forecast verification plot for both M- and X-class flares (Figure 

1.7). 
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Figure 1.7 – SEC Flare Probability Forecast Verification Plot 

 

SEC’s verification plot in Figure 1.7 shows the relative frequency of days on 

which at least one M-class flare occurred with respect to forecasted flare probability.  

The 45˚ dashed line marks 100% forecast accuracy.  SEC uses a modified version of 

standard error to determine the error associated with the observed relative frequency 

in its verification plot.  From Figure 1.7, it appears that SEC’s forecasting method is 

accurate for forecasts between 0% and 20%; however, SEC tends to over-forecast for 

probabilities larger than 20%.  In other words, for flare probability forecasts greater 

than 20%, there are fewer days observed when M-class flares occur than SEC’s 

forecasts would suggest.  
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1.8  The Chi-Squared Value  

 

1.8.1.  General χ2  Value 

A means to quantify the accuracy of a forecast method is to measure the deviation 

of its forecast verification plot from the 45˚ line marking perfect accuracy.  

Calculating the chi-squared (χ2) value is one method to quantify this deviation and the 

statistical value we used in this research to quantify the accuracy of flare forecasting 

methods.  In general, the χ2  value is used to determine whether or not an observed 

distribution of measurements is consistent with the expected theoretical distribution 

and is used to quantify the extent observed values deviate from the expected values.  

For a general discussion of the χ2  value, suppose we have an experiment in which 

we measure Y, a continuous quantity, N number of times, giving us the measurements 

y1, y2, …yN .  Furthermore, we have reason to believe the distribution of our 

measurements is governed by the Gaussian distribution.  We want to determine 

whether our hypothesis of a Gaussian distribution is valid for the actual distribution 

of our measurements.  We begin be calculating the mean and standard deviation of 

our measured values [Taylor, 1997]. 

N
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 The next step is to compute the expected distribution of our N  measurements if 

our hypothesis is true.  We must keep in mind Y is a continuous quantity and does not 

take on discrete values; thus, we cannot speak of expected values of y equal to any 

one value.  Instead, we must consider how many measurements we expect to be 

within a given interval  a < y < b.  To do this, we divide the range of possible values 

into bins such that all bins have a least several measurements.  Given the number of 

bins equals η , we calculate the expected number of measurements, Ek , that would 

fall into each bin k if our hypothesis is true.  For a Gaussian distribution, Ek is found 

using the results of equations 1.4 and 1.5.  Then we count how the number of actual 

measurements, Ok  , we observe within each bin [Taylor, 1997]. 

 If our hypothesis is true, we would expect the deviations, (Ok – Ek), to be small.  

Conversely, if our hypothesis was invalid, we would expect the deviations to be large.  

To quantify large and small deviations, we first calculate the expected outcome of our 

measurements if we were to repeat the experiment many times.  The expected results 

for many different Ok  should have an average value of Ek and a standard deviation of 

kE .  Thus, by considering the value of the ratio, 

k

kk

E
EO −      (1.6) 

we are able to quantify large and small deviations from the expected distribution.  If 

our hypothesis is valid, the ratio for most bins should be of order one or smaller.  We 

then square the ratio to avoid negative values and sum over all bins to calculate the χ2  

value. 
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 If the χ2  value equals zero, the observed values are in perfect agreement with the 

expected values.  In general, if the hypothesis of the distribution is valid and the 

individual terms in equation 1.7 are of order one or smaller, χ2 will be of order η  or 

smaller.  However, if  χ2  >> η  , then we have good reason to suspect our 

measurements are not governed by the expected distribution [Taylor, 1997]. 

 

1.8.2.  χ2  Value Applied to Flare Probability Forecasts 

To calculate a modified χ2  value for a set of flare probability forecasts, such as 

those produced by SEC in Figure 1.7, the distribution of possible probabilities (0% to 

100%) is broken up into η number of probability bins or ranges, so that each bin 

contains at least several datapoints.  The number of daily forecasts assigned a flare 

probability corresponding to each bin k is Wk .  Ok  is the percentage of flare-active 

days in bin k.  The expected percentage of flare-active days assigned to each bin k is 

equal to the bin midpoint and denoted by Ek.   

Furthermore, the square root of the number of daily forecasts assigned to an 

individual bin, kW  , is used as a weighting factor.  kW  was chosen as a weighting 

factor in order to weight those bins with potentially smaller errors more heavily.  We 

defined the error for the values of the observed relative frequency of flares as 

     
k

k W
1

=δ  ,     (1.8) 
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and our definition of error is modeled after the equation used to determine error for 

SEC’s forecast verification plot.  SEC modeled its error definition after that for 

standard error [Doggett, 2004].  For N measurements of the same quantity x, with a 

standard deviation equal to σx , standard error is given by  

     
N
x

x

σδ =  .     (1.9) 

Since flare forecast verification is concerned with counting the relative occurrences of 

flare-producing and flare-quiet ARs, a modified definition of the standard error which 

neglects the standard deviation of measurements had to be used.  

If a method of producing flare probability forecasts was not valid, we would 

expect the deviation of Ok  from Ek and the total χ2  value to be large.  However, if a 

method for producing flare forecasts is good, we would expect the total χ2  value to be 

small. 

( )( )∑
=

⋅−=
η

χ
1

22

k
kkk WEO     (1.10) 

For an example, see Figure 1.7 and notice the k=16 bin ranging from flare 

forecasts of 75% to 80%.  The relative frequency of flare-active days given daily 

forecasts assigned a flare probability between 75% and 80% is O16 ≈ 0.60.  If close to 

77.5% of the 200 days assigned a flare probability between 75% and 80% were flare-

active, then there would be excellent forecast accuracy and a χ2 value close to zero for 

bin-16.  However, we see for bin-16 the forecasts overestimated flare production, and 

actual flare production was around 60%.  Consequently, the χ2 value for bin-16 is 

433.0200)775.060.0( 22
16 =⋅−==κχ    (1.11). 
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If equation 1.7 was solved for bin-16, we would see the resulting term to be less than 

one, and we would have no reason to doubt the validity of the hypothesis.  Thus, we 

conclude the χ2 value for equation 1.11 of 0.433 is relatively small and does not give 

us reason to question the hypothesis. 

 

1.9  Zeeman Effect and Vector Magnetographs 

 

 The McIntosh Classification Scheme and SEC’s flare probability forecasting 

method rely on subjective interpretations of an AR’s visual characteristics.  However, 

the purpose of this research and of the previous research discussed below in §1.11 

was to explore a statistical method for producing objective flare forecasts and 

predictions.  From SEC’s forecast verification plot in Figure 1.7, we see flare 

forecasts published by SEC based on an AR’s visual characteristics compare 

relatively well with observed flare production.  Given that the visual characteristics of 

an AR are governed by the state and evolution of the local solar magnetic field, 

information derived from magnetic field parameters may provide an objective means 

of predicting and forecasting solar flare activity.  The solar layer for which past and 

present magnetic field data is available is the photosphere.  Little to no magnetic data 

is currently available for other solar layers that may or may not provide better 

indicators of flare activity, such as the chromosphere and corona.  The photosphere is 

also the solar layer in which ARs are observed in white light.  Thus, it is the 

photospheric magnetic field we are concerned with for this research.  
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The instrument used to measure the direction and strength of the photospheric 

magnetic field is a vector magnetograph.  This instrument relies on the Zeeman 

splitting of Fraunhofer lines and the polarization properties of sunlight to determine 

the magnitude of both the longitudinal (line-of-sight) and transverse magnetic field 

components [Phillips, 1995].  The most widely used spectra for photospheric 

magnetograms is light from iron of wavelength 5250Ǻ. 

 The Zeeman effect is named after the Dutch physicist, Pieter Zeeman, who in 

August 1886, observed the spectral lines from a sodium flame were broadened and 

even split into two and three lines when the flame was placed between magnets.  He 

further noted the amount of splitting is linearly proportional to the strength of the 

magnetic field through which the light passes.  Zeeman determined the relationship 

between the magnitude of the external magnetic field and the wavelengths of the 

components of the split spectral line is  

cm
eB

eπ
λλ

4

2

=∆  .    (1.12) 

Here B is the magnitude of the external magnetic field in units of Gauss, and λ is the 

wavelength of the zero magnetic field spectral line [Radel and Navidi, 1994].   

 The Zeeman effect is due to the interaction between an external magnetic field 

and the magnetic dipole moment associated with the electron’s orbital angular 

momentum.  An in-depth discussion of the Zeeman effect is beyond the scope of this 

paper.  We will, however, briefly discuss the Zeeman effect and apply it to the simple 

model of the hydrogen atom.   
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Due to the quantanization of energy, an atom can only absorb discrete amounts of 

energy corresponding to the allowed energy levels of its electron orbits.  Thus, as 

light passes through a cool gaseous material capable of absorbing radiation of 

wavelengths, λ, dark bands or absorption lines, also known as Fraunhofer lines, will 

appear in the light’s spectra at the given wavelengths, λ.  See Figure 1.8. 

 

 

Figure 1.8 - Emission and Absorption Spectra 

[http://phyun5.ucr.edu/~wudka/Physics7/Notes_www/node107.html] 

 

In the absence of perturbing factors, such as an external magnetic field, many of the 

quantum states of an atom can have identical energies and are referred to as 

degenerate energy levels.  However, the presence of a strong magnetic field can 

breakdown the degeneracy of atomic energy levels.     
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 For example, the principle quantum number, n, determines the energy of allowed 

states of the hydrogen atom.  However, an electron may move in a number of orbits 

within the hydrogen atom for a given allowed energy.  The orbits are designated by 

the orbital quantum number, ℓ, and can take on the values of  0…(n-1).   

 The magnitude of an orbit’s magnetic dipole moment is proportional to its angular 

momentum, L, and is given by 

L
m
e

e2
−

=µ   ,   (1.13) 

Since we have no loss of generality, we can align the z-axis of our coordinate system 

with the external magnetic field, and now mL =   and   m
m
e

e2
−

=µ .   mℓ is the 

orbital magnetic quantum number and can take on values from  -ℓ to +ℓ.  An external 

magnetic field will exert a torque on the magnetic dipole, and the resulting magnetic 

potential energy associated with a magnetic dipole subject to an external magnetic 

field in the z  directions is  ˆ

z
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[Ohanian, 1995].   

For a given quantum state in our example of the hydrogen atom, if the magnetic 

dipole moment is positive (parallel to the external magnetic field), a previously 

degenerate state is now available at an energy of 

UEE −=+ λσ      (1.15) 
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where  is the energy of the zero external magnetic field spectral line.  See Figure 

1.9.  The atom can now absorb a photon of wavelength  

λE

λλσ ∆+=+      (1.16) 

The orbital energy and wavelength available for absorption for the case of a negative 

magnetic dipole (oriented anti-parallel to the external magnetic field) is equal to  

UEE +=− λσ   

λλσ ∆−=−     .    (1.17) 

Thus, for the example of a transition between quantum states within the hydrogen 

atom from quantum state 2p  (n=2 & ℓ=1) to quantum state 1s  (n=1 & ℓ=0),  Zeeman 

splitting of degenerate quantum states, mℓ = -1, 0, +1 , results in a triplet of energy 

levels and spectral lines. 
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Figure 1.9 - Zeeman Splitting of Spectral Lines in Hydrogen Atom 

 

 In 1908 George Ellery Hale linked the Zeeman effect to solar spectra of sunspots.  

He observed no splitting of Fraunhofer lines and only broadening of the lines 

occurred for the spectra from solar regions void of sunspots.  However, when the 

spectrograph slit admitted light from a region that included a sunspot, Zeeman 

splitting was observed.  Further investigation by Hale led to the discovery the 

emissions from spectral lines created by Zeeman splitting were polarized. 

The polarized components of sunlight yield information about the transverse and 

longitudinal components of the solar magnetic field while the amount of splitting 

observed in the spectra of sunlight is proportional to the strength of the magnetic 

field.  The transverse solar magnetic field results in the linearly polarized component 

of sunlight, and the longitudinal component of the solar magnetic field is responsible 
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for the circularly polarized components.  The circularly polarized light can then be 

broken down into two plane polarizations at 90 degrees to each other.  The two plane 

polarized components can then be analyzed with filters to produce images of each 

direction of the circularly polarized components.  The difference of the images yields 

the longitudinal component of the solar magnetic field [Phillips, 1995].  See Figure 

1.10 for an example of a photospheric vector magnetogram.  

 

 
Figure 1.10 – Photospheric Vector Magnetogram, 

 (http://www.solar.ifa.hawaii.edu/IVM/Archive) 

 

 It is from the spectropolarimetric raw images of an active region that the Stokes 

polarization vector, [I, Q, U, V], is derived.  See Table 1.6 for the components of the 

Stokes vector [Rees, 2001].   
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Table 1.6 - Stokes Vector Components 
[1, 0, 0, 0]  Random Polarization 

[1, 1, 0, 0]  x-Linearly Polarized 

[1,-1, 0, 0]  y-Linearly Polarized 

[1, 0, 1, 0]  +45° Linearly Polarized 

[1 0,-1, 0]  -45° Linearly Polarized 

[1, 0, 0, 1]  Right-hand Circularly Polarized 

[1, 0, 0,-1]  Left-hand Circularly Polarized 
 

The amplitudes of the components of the Stokes vector are calculated for each pixel 

in the image [Leka and Barnes, 2003a].  However, before the vertical and horizontal 

solar magnetic fields can be determined, the 180º transverse field ambiguity must be 

resolved.  An ambiguity of 180º in the direction of the transverse field is due to the 

restriction to a single plane of observations of the electric field oscillation due to the 

transverse field.  Thus, observed polarization effects of  transverse field components 

that are parallel and anti-parallel yield identical linear results.  See Figure 1.11.   

 
Figure 1.11 - Polarizations of Incident Radiation for Longitudinal and Transverse Magnetic Fields, 

http://www.hao.ucar.edu/public/research/spmf/smv_b.html 
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The method that was used to resolve the 180º ambiguity for the data used in this 

research begins by requiring the direction of the transverse field to be such that it 

forms the smallest angle with the transverse component of the potential field.  The 

next step is then to convert the 2-demensional image from the image plane to the 

heliographic plane and the heliospheric coordinate system.  After the coordinate 

system conversion, a second criterion is enforced and requires the orientation of the 

transverse field be such that it best matches the configuration of the computed force-

free field.  The 180º ambiguity is further resolved by minimizing the angle between 

neighboring field vectors.  In regions of strong magnetic field, the final step is to 

select the orientation that minimizes the divergence of the magnetic field, B⋅∇ .  For 

weak magnetic field regions, the final step is to choose the orientation of the 

transverse component that minimizes electric current [Canfield et al, 1993]. 

 

1.10  Solar Magnetic Field Parameters 

 

 Insight into an AR’s future flare production may be gained by understanding the 

state and evolution of the local magnetic field.  Numerous parameters that contain 

information on the photosphere and solar magnetic field can be derived from vector 

magnetograms, and their spatial distributions can be parameterized using moment 

analysis.  For this research, the first four moments of the parameter distributions were 

used,  

Mean:     ∑
=

=
n

i
ix

n
x

1

1       (1.18)  

30 



Standard Deviation:   ∑
=

−=
n

i
i xx

n
x

1

2)(1)(σ     (1.19) 

Skew:   ∑
=

⎥
⎦

⎤
⎢
⎣

⎡ −
=

n

i

i xx
n

x
1

3
1)(

σ
ς      (1.20) 

Kurtosis:   0.31)(
4

1
−⎥

⎦

⎤
⎢
⎣

⎡ −
= ∑

=

n

i

i xx
n

x
σ

κ     (1.21) 

 

Described below are a few of the parameters that may be potential indicators of solar 

activity and/or have been researched previously in other studies.  Data for this 

research, as discussed below, and the previous research discussed in §1.11 were also 

derived from the following photospheric magnetic parameters.   

 

1.10.1  Magnetic Field Vector (B) 

Since ARs are associated with concentrations of magnetic flux, total magnetic 

flux is a quantity widely studied as an indicator of energetic events and can also be 

used as a measure of AR size.  Historically, larger ARs, regions with large values of 

total flux, have been more likely to produce flares.  Total magnetic flux is equal to the 

total zB  for the entire AR or field of view, while the net flux is equal to the net 

vertical component of the magnetic field, Bz, for the entire AR or field of view.  The 

distribution of Bz may also give clues as to the likelihood a solar flare will occur.  The 

evolution of the horizontal field component, Bh , also reflects the evolution of the 

local field.  A decrease in Bh may indicate emerging flux or an evolution towards a 
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more vertical field, whereas an increase in Bh may be a sign of disappearing flux or an 

evolution towards a more horizontal magnetic field [Leka and Barnes, 2003a]. 

 

1.10.2  Spatial Magnetic Field Gradients ( B∇ ) 

The emergence of new flux can lead to areas of strong spatial field gradients and 

shearing.  Spatial magnetic field gradients are a quantitative measure of the magnetic 

complexity of ARs and the compactness or distribution of flux concentrations.  This 

AR characteristic is reflected in the third designator of the McIntosh Classification 

Scheme (§1.6) [Leka and Barnes, 2003a].   

 

1.10.3  Magnetic Shear (ψ) 

Another parameter widely studied and linked to flare production is shear angle.  

Shear angle is a measure of the deviation of an AR’s observed field from the potential 

field.  Thus, it may also be a good indication as to the amount of energy stored in the 

local magnetic field prior to a solar flare event.  In general, magnetic shear is the 

difference between the 3-dimensional observed magnetic field vector and the 3D 

potential field vector.  Magnetic shear can arise from plasma motions within an AR.   

In previous research, several different applications and components of shear angle 

have been studied.  Research continues on determining which measure of shear is the 

most appropriate indicator of energy storage and flare productivity.  Horizontal 

magnetic shear is defined as the difference between the observed horizontal magnetic 

field component and the horizontal component of the computed potential field [Li et 
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al., 2000].  There have also been studies of the appropriateness of restricting 

measurements of magnetic shear to regions near the neutral line versus over the entire 

AR [Leka and Barnes, 2003a; Smith, 1996].  Historically, highly stressed neutral lines 

have been a good indicator of imminent flare-production.  Thus, by focusing on areas 

near neutral lines, the amount of free magnetic energy may be established. 

Some researchers have proposed strong shearing in an AR is a necessary 

condition for flaring; however, studies investigating shear as a flare predictor or flare 

trigger [Smith, 1996; Li, 2000] indicate shearing alone is not an adequate factor for 

flare production.  It has also been shown little to no loss in flare prediction accuracy 

is observed when other key parameters, such as total magnetic flux and persistence 

(past and present flare activity), are considered in the place of shear as a flare 

predictor [Smith et al, 1996]. 

 

1.10.4  Vertical Current Density (Jz) 

The presence of strong currents is also an indication of a non-potential field.  The 

vertical current density can be calculated from the curl of the horizontal magnetic 

field component.   

hZ sJ )()( B×∇=     (1.22) 

Changes in the moments of  may indicate emerging flux.  The total current density 

can also be broken down into two components, the current of chirality and the current 

of heterogeneity, where the current of heterogeneity is perpendicular to B.  The ratio 

of the components of current may reflect whether or not the region is force-free.  For 

ZJ
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situations where the current of heterogeneity is greater than the current of chirality, 

the majority of the current flow is perpendicular to B, resulting in a Lorentz force 

which may add energy to the system.  However, the field may be force free when the 

opposite is true, i.e. when current of chirality is greater than the current of 

heterogeneity [Leka and Barnes, 2003a].  In this situation we have less current flow 

perpendicular to B.  

 

1.10.5  Twist Parameter (α) 

Another measure of the amount of stress present in the solar magnetic field is the 

twist parameter.  The twist parameter quantifies how tightly the field lines are 

wrapped about a flux tube [Leka and Barnes, 2003a; Holder et al, 2004; Sturrock et 

al, 1986].  The equation, 

BB α=×∇ ,     (1.23) 

describes the relationship between α and B when the region is assumed to be force-

free.  Since α is a measure of the stress and strain of magnetic field lines, the twist 

parameter may serve as a flare indicator.  A field pattern with a large twist parameter 

may be far from its potential configuration and more likely to produce a flare.   

 

1.10.6  Helicity (hm) 

 Magnetic helicity is another measure of an AR’s field complexity, twist, and 

deviation from the potential field, and is given by 
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dVH
Vm ∫ ⋅= BA    .    (1.24) 

In ideal magnetohydrodynamics (MHD), magnetic helicity is one of the few global 

quantities conserved [Demoulin, et al, 2002].  Even in resistive MHD, magnetic 

helicity is conserved on time scales shorter than the global diffusion time scale.  

Current helicity, Hc, is given by equation 1.25, and from the temporal variations of 

current helicity, we can solve for the magnetic helicity.  

dVH
V oc BJ ⋅= ∫ µ     (1.25) 

[Leka and Barnes, 2003a].     

 

1.10.7  Inclination Angle (γ) 

 The inclination angle, γ, is a parameter characterizing the magnetic field’s 

orientation.  Specifically, it is defined as  
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Values of γ approaching 90˚ indicate a more vertical field, while values of γ 

approaching 0˚ represent more horizontal fields [Leka and Barnes, 2003a].   

 

1.10.8  Excess Magnetic Energy Density (ε) 

The magnetic excess energy density is another measure of the non-potentiality of 

the photospheric magnetic field.  A measure pertaining to the energy difference 

between the observed and potential fields is found by integrating ε over the entire AR 
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and is given by equation 1.27.  Since the integration is over only area and not volume, 

equation 1.27 does not represent the actual total energy difference. 
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where Bpot and Bobs are the magnitudes of the potential and observed magnetic fields 

respectively [Leka and Barnes, 2003a]. 

 

1.11  Previous Research 

 

 Previous research has shown individual solar parameters are not by themselves 

good indicators of solar flare activity.  Instead, it has been shown multivariable 

combinations of these parameters may have the capability to distinguish between 

flare-producing and flare-quiet active regions [Leka and Barnes, 2003a].  Research 

has also been conducted to apply discriminant analysis (DA) to the problem of solar 

flare prediction [Leka and Barnes, 2003b].   Multivariable DA is a promising tool 

given the distinct nature of the populations of flare prediction, flaring ARs and flare-

quiet ARs. 

 Leka and Barnes [2003a] studied time series of the vector magnetograms of three 

ARs in hopes of identifying those characteristics unique to preflaring regions.  The 

data they employed were derived from the Imaging Vector Magnetograph (IVM) data 

from the University of Hawai`i Mees Solar Observatory at Haleakala.  The ARs 

included one which produced one M1 flare (AR8636), another region which produced 

an X3 and M1 flares (AR0030), and a flare-quiet region similar in size and 
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complexity as the flaring regions (AR8891).  All three ARs were forecasted by SEC 

to flare.     

 Leka and Barnes studied those parameters that contained information about the 

state of the magnetic photosphere and/or have been researched previously in other 

solar activity studies (§1.10).  In order to analyze the state and evolution of the 

photospheric magnetic field, the temporal variation and behavior of the field 

parameters (time averages, derivatives with respect to time) and the first four 

moments of the spatial distributions of the field parameters (spatial mean, standard 

deviation σ, skew ς, and kurtosis κ) were used as variables in the study.  The field 

parameters included those derived from the solar magnetic field vector B, magnetic 

flux, inclination angleγ , horizontal spatial gradients of B, vertical current density Jz, 

twist parameter α , current helicity density hc, excess magnetic field energy density 

ρe, and shear angle ψ .  See Table 1.8 for a list of the parameters.   

 Most of the parameters behaved similarly during both flare-quiet and flaring 

epochs or showed inconsistent results prior to a flare.  Consequently, Leka and 

Barnes found no signatures unique to flaring ARs when considering parameters 

derived from the distribution of B and Jz , nor were flare-event signatures found in the 

higher moments of the magnetic field spatial gradients.  Furthermore, a few 

parameters previously thought to be indicators of solar activity did not perform well 

in this study.  The magnitudes of the total and net currents were similar for both flare-

quiet and flaring epochs.  Also, Bh∇  and hh B∇  showed no behavior consistent 

with a pre-flare signature.   
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 Their results yielded a few parameter characteristics unique to the flare-quiet 

epochs, namely a larger σ(γ), an evolution towards a more vertical γ, a larger ς(ρe), 

κ(ρe), σ(Bz), σ(Bh), zh B∇ , σ(hc) and total hm.  Some parameters only showed slight 

trends prior to an event; there was a small rise in Bh∇ , zh B∇ , and κ(Jz) and a 

possible decrease in σ(Jz) before the flares.  There were several parameters that 

showed strong behavior specific to the flaring epochs, such as larger α, ψ, σ(ψ), ch , 

and net
cH .   

 From their initial research, Leka and Barnes found no single parameter that was 

an adequate predictor of a flare event.  Magnitudes and evolution of certain 

parameters that were previously suggested to be good preflare signatures, such as 

magnetic flux, magnetic twist, and current flux, were nulled on account of similar 

behavior in the flare-quiet AR 8891.  Leka and Barnes [2003a] propose no one 

parameter was sufficient to produce a flare.  Instead, the best candidate for 

distinguishing an active region as flare-producing or flare-quiet may be to consider a 

combination of several key parameters. 

 Given the results of their initial research and the nature of flare prediction, Leka 

and Barnes then investigated the method of DA as a means of selecting an appropriate 

combination of photospheric magnetic parameters for prediction of solar flares [Leka 

and Barnes, 2003b].  For their DA research, they again used time series of vector 

magnetograms from the University of Hawai`i Mees Solar Observatory.  The time 

series were then divided into epochs ending with a GOES event, an hour of 
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continuous data capture, or a data-gap.  The resulting epochs from seven ARs 

included 10 flaring and 14 flare-quiet.    

 The research began by comparing single-variable discriminant functions (DFs).  

DFs are combinations of variables with the goal of classifying observations or 

measurements into pre-determined, exclusive groups.  Discriminant function analysis 

is discussed further in §2.1.  The variables having the highest probability the flaring 

and flare-quiet epochs were from different populations did not perform much better 

than would a random variable.  However, certain variables, such as the mean of σ(ψ), 

that do not perform well as a single-variable DF, are present in some of the best 

multivariable DFs. 

 Leka and Barnes then demonstrated the need to consider a multivariate 

combination of parameters by looking at two-variable DFs.  Lower error rates were 

achieved, and much higher probabilities the sample data were from different 

populations were attained.  Even lower error rates were possible when two-variable 

pairs were used to form four-variable DFs.  Surprisingly, when the variables of two 

poorly performing two-variable DFs were used together to form a four-variable DF, 

the resulting DF performed much better than the four-variable DF created from the 

best two-variable DF.  Leka and Barnes concluded a DF’s classification ability is 

determined by the proper combination of variables more than by individual variables. 

 In an attempt to determine the ideal combination of variables, a DF was 

constructed for every four-variable combination and was then ranked according to the 

resulting probability the samples were from different populations and the 

classification error rate.  The variables appearing most frequently in the best four-
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variable DFs were then identified.  The same ranking of DFs and variables was done 

for two-variable combinations.  According to Leka and Barnes, those variables 

appearing most frequently in the top 20 four-variable DFs should have the greatest 

predictive power, while the variables appearing most in the 20 worst four-variable 

DFs should have little predictive power.  To support this, a 10-variable DF was 

created from the 5 most frequently appearing variables in the top 20 DFs and the 5 

most frequently occurring variables in the worst DFs (see Table 1.7).  The variables 

appearing in the 10-variable DF were then put into standard form.  When DF 

variables are standardized, they are modified to have a mean of zero and a standard 

deviation equal to one.  The magnitudes of the DF coefficients then reflect the 

predictive powers of corresponding DF parameters.  The resulting standardized DF 

coefficients for the 10-variable DF verified Leka and Barnes’s method.  The variables 

chosen due to their occurrence in the best four-variable DF also had the largest 

standardized coefficients in the 10-variable DF.  The worst variables, likewise, had 

the smallest standardized coefficients. 
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Table 1.7 - 10-Variable DF   

Parameter Standardized 
Coefficient 

Frequency in Best 
4-Variable DF 

Frequency in 
Worst 4-

Variable DF 

))(( ακ
dt
d  2.444 244 0 

)(ασ  1.964 209 0 

)( hBκ  1.575 158 0 

)( hBσ  -1.326 79 0 

)(ψσ  -0.520 164 152 

))(( εσ
dt
d  0.492 1 154 

( )zB
dt
d  -0.370 5 178 

))80(( °>ψA
dt
d  0.352 6 188 

)( hB
dt
d  -0.258 2 187 

)(ψκ  0.204 3 176 

[Leka and Barnes, 2003b] 

 

 By comparing the flaring and flare-quiet epochs and considering the variables 

found in their research to have the best predictive power, Leka and Barnes found ARs 

may produce flares if they experience a twist parameter with an increasing kurtosis 

and larger standard deviation, a smaller σ(ψ), and a horizontal field with a smaller 

standard deviation and larger kurtosis.  They also stress that while they show better 

predictions are obtained when larger numbers of parameters are considered, 

uncertainties arise in their method due to the sample size being much smaller than the 
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list of candidate variables.  Their recommendation of increasing the DF sample size in 

order to better represent flare-quiet and flaring ARs was a task taken on by the 

research for this paper and is discussed below (§ 2.2). 
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Table 1.8 - Photospheric Magnetic Parameters 

[Leka and Barnes, 2003b]. 



 

2. Methodology 

 

2.1  Discriminant Analysis Applied to Solar Flare Prediction 

 

2.1.1  Discriminant Function Analysis 

 The method of flare forecasting and prediction, explored in this research, is based 

on linear discriminant analysis (DA).  DA is a multivariate statistical tool with the 

goal of classifying objects into predetermined exclusive groups based on a 

combination of selected parameters.  For this research, measurements of new objects 

to be classified are compared to the linear combination which characterizes the 

groups.  The comparison is then used to determine to which group the objects belong 

[Dillon and Goldstein, 1984].   

 DA begins with a selection of k independent variables.  Based on a preexisting set 

of data or training sample, a discriminant function (DF) is created from the k 

variables that is best able (given the selected variables) to distinguish between the two 

populations or groups that constitute the training sample.  For the case of flare 

prediction, a linear combination is created from the selected k  parameters that best 

separates, using the chosen parameters, the flare-producing and flare-quiet 

populations.  The training sample is used to determine how heavily each variable 

should be weighted within the DF.  The resulting weighting coefficients can be used 

as a measure of a variable’s contribution to the DF when in standard form.  

Standardized variables have means of zero and standard deviations equal to one.  The 

direction of the discriminant vector (equation 2.1) is the direction of maximum 
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separation in the k-dimensional space created by the data parameters [Wilks, 1995].  

Hence, the direction of the discri uch that it minimizes in-group 

variance while maximizing the between-group variance [Dillon and Goldstein, 1984]. 

   (2.1)      

eter values for the flare-producing AR 

minant vector is s

)(1
qf µµCD −⋅= −  

The vector, fµ , contains the mean param

population, and qµ  contains the means for the flare-quiet AR population.  C is the 

total covariance matrix given by 

2
)1()1(

−+

⋅−+⋅−
= qqffC .   ( 2.2) 

ple 

population, .  Furthermore, the dispersion of the data in both groups is assumed to 

be Gaussian and equal, so that is equal to   DA performance relies on the 

 

qf nn
nn CC

For the purposed of this research, the number of ARs in the flare-producing sam

population, , is assumed to equal the number of ARs in the flare-quiet sample fn

qn

f q

training sample populations being good representations of the true flare-producing 

and flare-quiet AR populations, and a statistically significant training sample will 

increase the likelihood the sample populations are adequate representations of the 

actual AR populations.  

 The discriminant vector serves as a one-dimensional tool for classifying the k-

dimensional data.  The vectors describing the means for each population are projected

onto the discriminant vector.  The midpoint, 

C  C .

λ , between the projections of t

vectors onto the discriminant vector is given by 

he mean 
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2
)( qf

T µµD +⋅
=λ

The left-hand side of equation 2.4 is the discriminant function (DF), and a new AR is 

.    (2.3) 

classified based on its data vector and the value of its DF relative to zero.  

Classify AR as  

Classify AR as 
Flare-Quiet if (2.4b) 

 

 X

Flare-Producing if (2.4a) 0≥−⋅ λXDT  

0<−⋅ λXDT  

X is the data vector describing the new AR to be classified.  If the value of the 

projection of  onto the discriminant function, minus the value of the midpoint, λ , is 

value is less than zero, the AR is predicted to remain flare-quiet.  The classification 

boundary where the DF equals zero can be defined by the plane with a normal vector 

greater than or equal to zero, then the AR is predicted to be flare-producing.  If the 

parallel to the discriminant vector passing through λ .  See Figure 2.1. 

 Figure 2.1 is a 2-dimensional example of DA given misclassification costs and 

prior probabilities are equal and the parameters are uncorrelated; unequal 

misclassification costs and prior probabilities are addressed in the following sections.  

the parameters of the new AR, , place it to the side of the classification boundary 

ion.  According to the slope of the 

The classification boundary is equidistant to both populations’ means.  The values of 

corresponding to the flare-producing populat

X
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discriminant vector, Parameter B is better able to determine classification and, as a 

result, is weighted more heavily than Parameter A. 

 

 

 

Figure 2.1 - 2-Dimensional Discriminant Analysis 
 

 

2.1.2  Unequal Costs of Misclassification 

be quite costly.  System shutdowns result in lost data and disruptions in 

communication and surveillance.  It is also costly to maneuver a satellite out of 

Leka and Barnes’s initial DA method did not address unequal costs associated 

with misclassification of an AR and was modified to allow for customized flare 

forecasts through the incorporation of unequal misclassification costs.  The 

precautions taken by users of space-based systems in light of a possible solar flare can 
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harm’s way or to execute procedures to harden the satellite.  Such maneuvers may 

also take the satellite away from its desired area of surveillance.  Although damage to 

ace-based systems due to energetic solar events can be extensive, the costs of 

hardening or shutting down systems in light of a solar threat cannot be ignored.  Thus, 

an objective of this research was to allow users to customize the DF classification 

rules by specifying the cost associated with a miss and the cost associated with a false 

alarm.  A miss is the misclassification of a flare-producing AR as a flare-quiet AR, 

and a false-alarm is the misclassification of a flare-quiet AR as a flare-producing AR. 

Let the cost associated with a miss equal  and the cost associated with a false 

alarm equal .  When  and  are equal, the classification rules are given by 

equations 2.4a and 2.4b.  However, when  and  are not equal, the 

classification rules in equations 2.4a and 2.4b must be modified.  For unequal 

misclassification costs, the classification rules become 

Classify Observation as 
Flare-Producing if 

sp

qfL ,

fqL , qfL ,  fqL ,

qfL , fqL ,

0ln
,

, ≥⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−−⋅

qf

fqT

L
L

λXD  (2.5a) 

Classify Observation as 0ln
Flare-Quiet if ,

⎟
⎠

⎜
⎝ qfL

The term, 

, <⎟
⎞

⎜−−⋅ fqT L
λXD  (2.5b) 

 

⎛

⎟
⎠

⎞
⎜
⎝

⎛

qfL
L

,

ln , in equations 2.5a and 2.5b effectively moves the classification 

boundary according to the given costs.  For example, if qfL ,  is larger than fqL , , their 

⎟⎜ fq,
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⎟
⎟ratio would be less than one, and 
⎠

⎞
⎜
⎜
⎝

⎛

qf

fq

L
L

,

,

classification boundary would shift towards the mean of the flare-quiet populatio

As a result, a new data vector would have a higher probability of being classified as a 

flare-producing AR.  The occurrences of misses would then decrease; although, the

rate of false alarms would increase [Wilks, 1995].  Figure 2.2 is an example of the 

shift of the classification boundary in response to a miss being twice as costly as a 

false-alarm. 

ln , would be negative.  Thus, the 

n.  
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Figure 2.2 - DF and Unequal Misclassification Costs, 
The plots show the results of the DF for the two parameters, the skew of the inclination 
angle ς(γ) and the standard deviation of the twist parameter σ(α).  The top panel represents 
the classification boundary for equal misclassification costs.  The bottom panel shows how 
the classification boundary moves towards the flare-quiet mean in response to the cost 
associated with a miss being twice the cost associated with a false-alarm. 

50 



 
 

2.1.3  Unequal Prior Probabilities of Membership 

If prior probability of membership to the flare-producing population, Pf , is not 

equal to prior probability of membership to the flare-quiet population, Pq, then the 

classification rules are given in equations 2.6a and 2.6b.  

Classify Observation as 
Flare-Producing if 

0ln
,

, ≥⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⋅−−⋅

f

q

qf

fqT

P
P

L
L

λXD  (2.6a) 

Classify Observation as 
Flare-Quiet if 

0ln
,

, <⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⋅−−⋅

f

q

qf

fqT

P
P

L
L

λXD  (2.6b) 

 

If, for example, Pq is greater than Pf , the classification boundary would move 

towards the flare-producing population mean as to allow for a greater number of 

future ARs to be classified as flare-quiet [Wilks, 1995].  See Figure 2.3. 
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Figure 2.3 - 2-Dimensional DA for the Case of Greater Prior Probability 

 

  

      of Membership to the Flare-Quiet Population 

Misclassification costs and prior probabilities can be customized in order to 

satisfy one of the following misclassification criteria. 

1) Minimize total instances of misclassification (false-alarms plus misses) 

2) Require misclassification rate of misses be proportional to the flare-producing 

population size, and require misclassification rate of false-alarms be proportional to 

the flare-quiet population size 

3) Require misclassification rates of misses and false-alarms be equal 
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For the DA flare prediction method developed in this research and in the preceding 

research conducted by Leka and Barnes [2003b] (§1.11), the goal was to minimize 

the overall misclassification errors. 

 

2.1.4  The Mahalanobis Distance   

 A statistical measure of the separation between the two populations’ mean vectors 

is the Mahalanobis distance.  Unlike the squared Euclidean distance between two 

vectors, the Mahalanobis distance takes into account the variances of the variables as 

well as their covariances.  See equations 2.7 and 2.8.  For DA and statistical purposes, 

the Euclidean distance may not be very informative [Rencher, 2002].  The 

Mahalanobis distance relates the distance between the two vectors to how many 

tandard deviations sep

Euclidean Distance =    (2.7) 

1T
qf µ(µC −−   (2.8) 

 the 

mputing the Mahalanobis distance [Rencher, 

2002].   

From the Mahalanobis distance, a measure of how probable it is that observations 

are from the same population can be derived.  As the Mahalanobis distance increases, 

certainty in the existence of two discrete populations increases.  However, an increase 

s arated them. 

)( T
qfqf µ(µ)µµ −−

Mahalanobis Distance = ( qf )µµ − )

 The presence of the inverse of the covariance matrix in the definition of

Mahalanobis distance standardizes all variables to the same variance and reduces 

correlation among variables.  Thus, parameters with larger variances or are highly 

correlated are weighted less when co
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in the Mahalanobis distance does not necessarily lead to lower misclassification rate

given the variance within a population may be large.  The Mahalanobis distance is 

one of the tools we used to analyze a

s 

nd select parameters for the DF-based flare 

recasting method used in this research and discussed below. 

 

2.2  Improving Statistical Significance of Sample Size 

 

 In the previous research conducted by Leka and Barnes [2003b] the number of 

photospheric parameters considered greatly outnumbered the number of data points in 

the training sample.  Furthermore, the data used for their research were composed of 

time series of magnetograms and were used to investigate DA as a means of 

producing hourly flare forecasts.  However, the purpose of this research was to 

explore DA as a tool for producing daily flare forecasts, and the data used here were 

“snapshots” of dai s present on the sol

time derivatives of ible.  A priority of this r ch w

to improve the confidence of the DA results and to allow for more solar magnetic 

parameters to be considered by increasing the size of the training sample. 

ts of a statistically significant training sample adequately describe the true 

flare-producing and true flare-quiet populations; thus, as the training sample size 

increases, confidence in the results also increases.  Presently, the training sample has 

1182 data points, well over the 147 photospheric magnetic parameters to be 

fo

ly magnetograms of AR ar disk.  Consequently, 

 parameters were not poss esear as also 

Statistically sound DA results rely on the population of the training sample to be 

much larger than the number of parameters to be consider for DF variables.  The 

datapoin
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considered.  The dataset includes magnetograms from January 2001 to February 

2003, 263 of which are associated with flaring ARs.   

An AR was classified as flare-producing if at least one flare occurred within 2

hours after a magnetogram was taken of the region and only if t

4 

he flare was reported 

as a GOES event of C-class or larger.  If an AR did not produce at least one flare 

en the AR was classified as 

flare-quiet.  Only magnetograms with an observation angle of at most 50˚ from disk 

d.   

 

  

2.3  Flare P

  

In an attempt to compare how well DA-based flare prediction method does with 

respect to SEC’s flare forecasting method, daily flare probabilities are produced along 

with the DF classification of an AR as flare-producing or flare-quiet.  Effectively, the 

binary DF classification of ARs corresponds to a 50% forecast.  The discriminant 

analysis development for this research assumes the probability distributions of flare-

quiet and flare-producing AR populations are Gaussian and have equal covariance 

within 24 hours of a magnetogram being taken of it, th

center and containing a solar magnetic field measurement of at least 500G were use

 The process of adding to the training data begins with the date and time stamp for 

a given magnetogram.  From the date and time stamp, the AR number corresponding 

to the magnetogram can be found on the University of Hawai`i Mees Solar 

Observatory website (http://www.solar.ifa.hawaii.edu/IVM/archive.html).  Soft X-ray 

and optical flare event information from NOAA SEC’s website can then be associated

with the appropriate AR (http://www.sec.noaa.gov/ftpmenu/indices.html). 

robability Forecasts 
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matrices.  These assumptions make it possible to revise Leka and Barnes’s initial

approach in order to produce flare probability forecast

 DA 

s based on the Gaussian 

dist

s. 

ribution. 

Probability forecasts were created by comparing parameter values of a candidate 

AR to the mean parameter values of the flare-quiet and flare-producing population

πσ

µ

2
)(

2)( −
−

=

y

eyf     (2.9) 

Equation 2.9 represents a normalized, single variable Gaussian probability 

σ 22

ion 

distribution.  For a given population, µ is the parameter’s mean value, y is the 

measured value, and σ is the population standard deviation.  If a population is 

described by a set of k parameters, then the multivariate probability distribut

normalized to unity is given by equation 2.10.  

⎥⎦⎢⎣
−−

−
= ))(()'(

2)2(
)( 2 µYΣµYΣY Expf kπ

   (2.10) ⎤⎡ −− 11 121

he population covariance matrix, Y is the vector of parameter values for 

Y) is the probability of observing Y. 

 to produce a flare probability forecast, Gaussian probability distributions 

for s 

where Σ is t

the new AR to be classified, and f(

 In order

both flare-quiet and flare-producing populations are calculated.  Each population’

distribution is then weighted by the total number of its members, nj , to take into 

account unequal population sizes.  Equation 2.11 now represents Gaussian probability 

distributions normalized to nj. 

jkj nExpf ⎟⎟
⎠

⎞

⎝

⎛

⎦
⎤

⎣
⎡− −−

2
1

)2(
1 121

2π⎜⎜ ⎥⎢ −−= ))(()'()( µYΣµYΣY   (2.11) 
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Thus, the value, producingflaref −)(Y , corresponds to the number of flare-producing active 

regions described by the given measurement, Y.  Likewise, f )(Y  is the

number of active regions sharing para

quietflare −  

meter values with the measurement, Y, that did 

not produce a flare.  Our flare probability is then given by equation 2.12. 

( )
producingflarequietflare

producingflare

ff
f

P
−−

−

+
∗=

)()(
)(

%100
YY

Y
Y     (2.12) 

The need to weight the distributions by popul

d by 

ve a 

 

on 2.  See Figure 2.5.  Thus, it is clear 

we are unable to compare the relative probabilities of an observation unless 

population sizes are taken into account. 

ation size can be seen in Figures 2.4 

and 2.5.  When both distributions are normalized to one and are not weighte

population size, as in Figure 2.4, a measurement of Y misleadingly looks to ha

greater probability of having membership in Population 1.  However, when the

distributions are weighted by population size, we see there is actually a greater 

probability an observation of Y is from Populati

 
Figure 2.4 - Gaussian Distributions Normalized to One 
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Figure 2.5 - Gaussian Distributions Weighted by Population Sizes and Normalized to n

 

 

 

2.4

 Many of the variables considered as DF parameters are highly correlated.  Highly 

correlated parameters used in a DF may yield misleading results.  Since the predictive 

power of the individual parameters would be shared, a situation could occur where 

one parameter, that alone is a good flare predictor, would in effect share its predictive 

power with another correlated variable.  As a consequence, neither parameter would 

appear as a good indicator of a flare, or the opposite may also occur and both 

parameters could deceptively appear to be very good flare predictors.   

To investigate a method of selecting among highly correlated variables, this 

research turned to th four different 

measures of shear angle (§1.10.3).  Once an adequate test for selecting variables from 

a set of correlated parameters is identified, the goal is to apply the test to other groups 

j 

  Highly Correlated Variables and Shear Measure Selection 

 

2.4.1 Shear Measure Selection Method 

e list of 40 parameters associated with the 
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of highly correlated variables.  See Tables 2.1a and 2.1b for the definitions of the 

shear measures and a list of the parameters derived from the moments and variables 

associated with each shear measure.  Each measure of shear brought much of the 

same information to the DA.  By selecting only one measure of shear to be included 

in the DF, process time was greatly reduced, predictive power was less diluted among 

the shear variables, and a candidate for the best measure of magnetic shear angle was 

identified.   

 

Table 2.1a - Shear Measures 

3D Shear Angle Angle between observed B and the potential field vector, 
calculated over the entire AR  

3D Neutral Line           Angle between
Shear Angle 

 observed B and the potential field vector, 
calculated only in areas near neutral lines 

Horizontal Shear Angle and the horizontal component of the potential field 
Angle between the horizontal component of observed B 

vector, calculated over the entire AR 

Horizontal Neutral L and the horizontal component of the potential field ine 
Shear Angle 

Angle between the horizontal component of observed B 

vector, calculated only in areas near neutral lines 
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Table 2.1b - Shear Parameters 

1. µ(ψ) 

2. σ(ψ) 

3. ς(ψ) 

4. κ(ψ) 

5. Total Area within AR with ψ ≥ 45˚ 

6. Total Area within AR with ψ ≥ 80˚ 

7. Fraction of Neutral Line with ψ ≥ 45˚ 

8. Fraction of Neutral Line with ψ ≥ 80˚ 

Weighted by hB  9. µ(ψ) 

10. σ(ψ) Weighted by hB  

 

 10-variable DF for each shear measure in  W reating a order to 

evaluate how well each me

 fo e shear 

measures, verification plots sim 2

Mah ce were 2.3 

though 2.6 for a summary of the shear param ters results.  The shear measures were 

then ranked according to the forecasts’ χ2 values and Mahalanobis distances. 

A probability bin boundary configuration for the verification plots was initially 

chosen to maintain statistical significance ac ins.  Since the χ2 value is 

weighted by bin population, other forecast bi undary configurations were selected 

to analyze the χ2 dependence on boundary selection.  For example, one configuration 

e began by c

asure performs as a flare predictor and contributes to an 

recast.  For each of the flare forecasts created by thaccurate flare probability

ilar to Figure 1.7 were created and the χ  value and 

 computed.  See Figures 2.6 through 2.9 and Tables alanobis distan

e

ross all b

n bo
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of bin boundaries was established so that the bin populations within a given 

verification plot were all approximately equal.  The relative rankings of the shear 

measures as flare predictors, when sorted in relation to the χ2 value of their forecasts, 

proved to be highly dependent on bin boundary placement, so the χ2 value was not a 

reliable method by which to rank the shear measures.  However, the rankings were 

consistent when sorting was determined by the Mahalanobis distance.  See Table 2.2.   

 

    Table with  
     respect to Mahalanobis Distance 

RANKING MEASURE 

 2.2 - Shear Measure Forecast Ranking 

1 Horizontal Shear 

2 3D Neutral Line Shear  

3 Horizontal Neutral Line Shear 

4 3D Shear 

 

 
 
 

Another approach was taken to investigate the appropriateness of using the χ2 

value as a means of ranking variables.  Working with one measure of shear at a time, 

a “step-up” method was employed to test whether or not the χ2 value monotonically 

decreased as parameters were added to the DF.  The expected behavior of DA, if all 

assumptions are valid, is an improvement in classification as the number of 

discriminant parameters increases.  The step-up approach begins with a list of the 10 

parameters derived from a single measure of shear.  The procedure then selects the 

first variable from the list that returns the smallest χ2 value for its single-variable DF.  
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Once the first variable is selected, the step-up procedure cycles through the re

nine variables and selects the variable, when coupled to the first variable, returns t

smallest χ

maining 

he 

he step-up approach was repeated for each measure of shear with the 

Mahalanob e Mahalanobis 

distance w ment in the error rate as parameters 

were added to the DF.  Due to its dependence on bin population and bin boundaries 

and its inconsistent behavior, the χ2 value was ruled out as a criterion for shear 

measure and variable selection in favor of a selection rule based on the Mahalanobis 

distance.  Furthermore, th ahalanobis misclassification 

costs or prior probability changes in the DF, increasing its robustness as a selection 

rule.  Due to its consistent top ranking with respect to Mahalanobis distance, 

horizontal shear angle, the measure of shear angle defined as the difference between 

the 

2 value for the two-variable DF.  The process is repeated until all 10 

variables have been selected and a 10-variable DF is created.  Against expectations, 

the χ2 value did not monotonically decrease as variables were added to the DF; 

instead, the error rate fluctuated and showed no consistent behavior.   

T

is distance as the criterion for variable selection.  When th

as used, there was a monotonic improve

e M distance is not affected by 

horizontal components of the observed and potential field, is the measure 

distinguished as the best gauge of shear in this research. 
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Tab
An

Table 2.3b - Horizontal Shear 
Angle  
Mahalanobis Distance…………..1.0283 

Figure 2.6 - Horizontal Shear Angle Verification Plot 

 

le 2.3a - Horizontal Shear  
gle Classification Table 

χ2  Value…………………….........1.0163 

Rate of Correct Classification…..0.8037 

Predicted 
 

Flare Flare-
Quiet 

Flare 5 212 

O
bs

er
ve

d 

Flare-
Quiet 18 901 

 

 

63 



 

Figure 2.7 - 3D Shear Angle Verification Plot 
 
 
 
 
 
 
 

  
Classification Table 

Mahalanobis Distance…………..0.4655 

Table 2.4a - 3D Shear Angle

 Table 2.4b - 3D Shear Angle  

χ2  Value…………………………..0.6802 

Rate of Correct Classification…..0.7800 

 
 

Predicted 
 

Flare Flare-
Quiet 

Flare 5 258 

O
bs

er
ve

d 

Flare-
Quiet 2 917 
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Figure 2.8 - Horizontal Neutral L Verification Plot 

Table 2.5a - Horizontal Neutral Line Shear 

 
Table 2.5b - Horizontal  

 
ine Shear Angle 
 
 
 

Angle Classification Table 

Neutral Line Shear Angle  
Mahalanobis Distance……….....0.9266 

χ2  Value…………………………..0.5572 

Rate of Correct Classification…..0.7970 

 
 

Predicted 
 

Flare Flare-
Quiet 

Flare 69 194 

O
bs

er
ve

d 

Flare-
Quiet 46 873 
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Figure 2.9 - 3D Neutral Line ear Angle Verification Plot Sh
 
 
 
 

Table 2.6a - 3D Neutral Line Shear  
Angle Classification Table 
 

Table 2.6b - 3D Neutral 
Line Shear Angle  
Mahalanobis Distance……….....0.9328 

χ2  Value…………………………..0.9214 

Rate of Correct Classification…..0.8012 

 

Predicted 
 

Flare Flare-
Quiet 

Flare 79 184 

O
bs

er
ve

d 

Flare-
Quiet 51 868 
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2.4.2  Shear Measure Probability Distributions  

The forecast distributions of the 10-variable DF for each of the four shear 

measures can be seen in the bottom frames of Figures 2.6 through 2.9 in §2.4.1.  An 

interesting thing to note is how the probability distributions differ for the different 

measures of shear. 

Both calculations of the shear angle restricted to areas near the neutral line have 

very similar distributions, peaking with most of their population in the 10-14% 

probability bin and having very few forecasts in the higher probabilities. 

The probability distribution of the 3D shear measure is extremely different and 

has more of a bell-shape.  It also peaks at a higher probability bin, 20-24%, but does 

not assign a forecast of flaring greater than 55% to any AR.  Looking at the forecast 

verification plot for 3D shear (Figure 2.7) we see the parameter under-forecasted flare 

occurrences for all bins between 25% and 60%.  Furthermore, the 10-variable DF of 

the 3D shear parameters only predicted 5 ARs to flare out of the 263 flare-producing 

ARs.  Its poor abil ly small value for the 

Mahalanobis distance.  However, compared to the other shear measures, the 3D shear 

forecast’s χ2 value is one of the smallest, but that is due to the absence of ARs 

ility bins.  Recall from §1.8, each kth term in the 

calculation of the χ2 value is weighted by the nu e kth bin.  

The higher probabi reement between predic

s poo  not co n any d ints and, th

the χ .  The e a few ible explan  

3D shear parameters.  1) The 3D shear m asure may not be a good indication of the 

ity as a discriminator is captured in its relative

assigned to the higher probab

mber of ARs assigned to th

lity bins, where ag tion and observation 

wa

of 

r, did ntai atapo us, did not factor into the calculation 

2 value re ar  poss ations for the poor performance of the

e
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magnetic shearing, and as a consequence, the 3D shear parameters just are not good 

pre d flare-

e-

e might have overshadowed the little predictive power possessed 

by the 3D shear variables.  From §2.3, the probability forecast method developed in 

this research accounted for unequal population sizes, and the number of flare-quiet 

ARs is about 350% larger than the number of flaring ARs.  Thus, unequal population 

sizes coupled with the small Mahalanobis distance would contribute to most ARs 

being catego

 The measure of shear selected to be used in the step-up procedure, the horizontal 

shear measure, shares probability distribution characteristics with the measures that 

are restricted to the neutral line and with the 3D shear measure.  Its probability 

distribution is similarly peaked as the neutral line measures, but at the 5-9% 

probability bin, and it has a small almost bell-like feature between the probabilities of 

10% and 49%. 

dictors and cannot be used to discriminate between flare-producing ARs an

quiet ARs.  2) The distributions of the 3D shear parameters do not resemble a 

Gaussian distribution, a violation of the DA assumptions.  3) The much greater flar

quiet population siz

rized as flare-quiet.  4) Some researchers have suggested limiting the 

calculation of magnetic shear angle to only the areas near AR neutral lines, and our 

results of the parameters derived from the measures of 3D shear and measures 

restricted to the neutral line initially seem to support this.  If in fact it is the shearing 

in areas near the neutral lines that most contribute to solar flares, then calculating the 

3D shear for the entire AR may be diluting the flare-specific information. 

 The shear measure probability distributions tell us the 3D shear measure may not 

be an adequate measure of shear since it predicts no ARs to flare.  The measure of 
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horizontal shear angle which is calculated over the entire AR and the measure of 

horizontal shear angle restricted to the neutral line produce accurate forecasts when 

bins contained many datapoints.  It may be in the horizontal field where we sho

look for shear thresholds for flare production. 

  Discriminant Function Variable Selection 

 

 How well the DF performs is directly related to the selected variables’ ability to 

predict solar flares.  Due to time constraints of this research and the processing time

of the DF procedures used, the list of initial 147 possible photospheric magnetic and 

AR parameters had to be reduced.  A shortened list of parameters was chosen by 

reducing correlation and redundancy among the parameters and by eliminating those 

parameters most unlikely to contribute to flare production.  Once a reduced list of 

uld 

 

2.5

2.5.1  Selecting DF Variables 

 

parameters was chosen, the step-up method, described in §2.4.1, was applied to 

determine the best subset of parameters from which to create the DF.  See Appendix 

A for a list of the 147 possible parameters and those chosen for the final list used in 

the step-up procedure.   

list.  Although these two variables give no 

insight into flare production, they were included as control variables.  If the step-up 

procedure had selected either parameter as having strong predictive abilities, we 

 From among the AR parameters, we selected seeing and observation angle to 

include in the final, shortened variable 
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would have been hesitant to trust our results.  Fortunately, our procedures did not 

identify either parameter as being a good predictor of flares. 

 Redundancy of information and high correlation among the parameters was also

concern.  By identifying redundancy among va

 a 

riables, we were able to eliminate 

many parameters.  The total vertical current density Jz, for example, is the sum of the 

geneity Jh.  Thus, all the information 

vailable for Jz can be contained in two of the three parameters, and we chose to 

d from the current of chirality.  Current of 

heterogeneity is normal to B and may shed light on any forcing that may be present.  

Redundancy within the J and J  parameters was further reduced by excluding the 

parameters describing the absolute values and signed values of the positive and 

negative currents.  This information is incorporated in the parameters for the total 

currents I  and I  , the absolute value of the net currents I  and I , and the 

current of chirality Jc and the current of hetero

a

exclude those parameters derive

z h 

tot h_tot net h_net 

mean values for zJ and hI .   

−+ += IIItot      (2.13) 

−+ += III     (2.14) net

−+ += hhh III tot_     (2.15) 

−+ += hhneth III _     (2.1

+ −

Since the direction of the net current may yield information about flare 

6)  

where  and  are the currents associated with each sign. 

production, we included the signed first four moments of Jz.  We did not include the 

I I
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parameters describing the vertical currents emanating from each magnetic polarity

Due to hemispheric biases and solar cycle effects on solar ma

.  

gnetic polarity, currents 

ntal 

of the 

specific to a magnetic polarity may not contribute to a general picture of a preflaring 

state.   

 The total magnetic field vector parameters is another set of variables that can be 

reduced by including only those parameters describing elements that may contribute 

to solar flares and are not redundant.  The first four signed moments of the horizo

and total magnetic field vectors are included.  However, only the moments 

absolute value of the vertical field and the absolute value of the net flux netΦ  are used

in order to avoid hemispheric biases.  The magnitude should be a better indicator of

solar activity than the direction of the vertical magnetic field and magnetic flux. 

parameters for the flux associated with each magnetic polarity are not used since th

information is included in the parameter, total flux Φ

 

 

 The 

e 

ed 

ce  

      

tot, which is a parameter includ

in the step-up pro dure.

−Φ     (2.17) + +Φ=Φ net

     −     (2.18) + Φ+Φ=Φ tot

 Furthermore, the absolute values of the moment

current helicity are also used along with the absolute value of the net current helicity.  

The signed values are not included since it is the amount, and not the direction, of 

 complexity of the 

mag e 

 

s of the twist parameter and of 

twist and helicity present in an AR that is an indication of the

netic field and of flare production.  Due to their ability of quantifying th

magnetic complexity of an AR, we also include in the step-up procedure the first four

71 



moments of the inclination angle and excess energy; total excess energy; the signed 

gradients of the vertical, horizontal, and total magnetic field; and the 10 horizontal 

shear parameters. 

 To complete the selection of the most appropriate DF parameters, we applied the 

on 

tal shear angle.   

e e Mahala

of the sixth variable and the amount of improvement progressively decreased and 

ance of the DF created

ve 

 

 

step-up procedure to the final list of 69 photospheric magnetic parameters using the 

Mahalanobis distance as the selection rule.  We addressed the problem of how many 

parameters to include in the construction of the final DF by noting in the step-up 

procedure the amount of improvement in the Mahalanobis distance with the additi

of the each parameter.  Given our set of 69 parameters, there was little improvement 

after the fifth and sixth parameters were added.  The top six parameters selected, in 

order, were the total magnetic flux, the total area of the AR with horizontal shear 

angle greater than 80°, the mean of the gradient of the vertical magnetic field, the 

total current of heterogeneity, the kurtosis of the horizontal shear angle, and the 

standard deviation of the horizon

Since there was little improvem nt in th nobis distance with the addition 

leveled off, we evaluated the perform  from all of the top six 

parameters and compared the results to those of the DF created from only the top fi

parameters.  See Table 2.7. 
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   Table 2.7 – 6-Variable versus 5-Variable DF 

 6-Variable DF 5-Variable DF 

Mahalanobis Distance 2.135 2.075 

χ2 Forecast Value 1.595 1.118 

Rate of Correct 0.827 0.829 Classification 
   

 

Even though the 6-variable combination resulted in a larger Mahalanobis distance, w

concluded only five parameters were needed for the DF due to the better probabili

forecast and lower error rates obtained with the 5-variable DF.   

 

2.5.2  5-Variable DF Results 

e 

ty 

 

 

 

See Table 2.8 and equation 2.15 for the results of the DF constructed from the 

five selected parameters.   
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Table 2

Parameter* Flare-Quiet A
Mean 

du
Mean 

Standardized 
Coefficient 

.8 - Top 5 Discriminant Function Variables 

R Flare-Pro cing AR DF 

Φ Mx × M 1.6270 21 2210315.109.734× 2 x tot

Total Area o
ψ ≥ 80

2 78 Mm2 -1.2051 f       
˚ 69 Mm

90.609 G Mm-1 01.901 G Mm 0.4045 1 -1
zB∇  

Ih A A 0.5502 111055.3 × 1210219.1 ×

κ(ψ) 4.346 4.636 -0.3149 

DF Constant --- --- 1.8269 

* Parameters are listed in order of importance according to their corresponding standardized coefficients 

 

))((3149.0)(5502.0)(4045.0)(2051.1)(6270.18269.1)( 80 ψκψ −+∇+−Φ+= °> hzAtot IBf X
(2.19) 

res historically are produced in regions of highly 

con c 

searched parameters for solar flare production.  Thus, it 

was expected these two parameters would be among the top flare predictors.  From 

Table 2.8 we see the average total flux for a flaring AR is over twice as large as that 

of a flare-quiet region.  Active regions are by definition areas of concentrated 

magnetic flux, and total magnetic flux has often been a parameter used to describe an 

AR’s size.  Larger ARs in which the solar magnetic field has been highly 

concentrated have historically been flare-productive.  Also, previous research has 

identified emerging magnetic flux as a possible flare trigger.  Flux emergence may be 

As discussed previously, fla

centrated magnetic flux and increased field complexity.  Total flux and magneti

shear are two of the most re

74 



identified within an AR by an increase in the total magnetic flux.  Thus, a larger total 

magnetic flux value may indicate an approach to a magnetic threshold and an AR 

more likely to produc

As expected, a shear parameter is also among the top predictors.  The parameter is 

a specific measure of the total area within the AR with a hor ontal magnetic shear 

angle greater than 80˚.  Ag e value of the pa rger for flaring ARs, 

which is consistent wit   The rel revious research between 

larger areas of intense shearing and flare production is supported here; however, we 

see strong shearing is not a sufficient condition for flares as has been previously 

p  parameter of shear alone is not a good predictor of solar flares.  By 

t predict a 

single AR to flare.  However, it was the second parameter to be chosen in the step-up 

procedure, and when used in conjunction with other parameters, it had the ability to 

red

 

 in the 

us, the 

e 

e a flare.   

iz

ain th rameter is la

h flare theory. ation made in p

roposed.  This

itself, the parameter for the area of horizontal shear angle at least 80˚ did no

uce the misclassification error rates and to increase the statistical separation 

between the flaring and flare-quiet populations. 

We also see a larger kurtosis of the horizontal shear angle is an indication of a 

preflare state.  This suggests the shear angle distribution for flaring ARs is more 

peaked near the population mean and the values of the shear angle for flare-producing

ARs are concentrated near the population mean.  Thus, there is less of a spread

values of the shear angle among flaring ARs than among flare-quiet ARs.  

Furthermore, the kurtosis of a purely Gaussian distribution is equal to 0; th

value of its kurtosis may indicate the horizontal shear parameter distribution may b

non-Gaussian. 
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The step-up procedure also associated flaring ARs with a larger gradient of the 

vertical magnetic field.  This result suggests a more complex magnetic field with a

larger spatially varying vertical c

 

omponent.  This also supports the notion of 

em

 

to 

 

g 

 

nent 

rom our results the mean magnitude 

of t  in 

absence of 

erging flux as a flare trigger.  Emerging flux can lead to large gradients in the 

vertical field.  One example of how emerging flux can lead to large gradients within

an AR is flux emergence that introduces magnetic field lines of a polarity opposite 

that of the surrounding area, effectively creating an island of magnetic polarity.  

These situations would lead to a complex magnetic field structure and a large vertical

field gradient.  Furthermore, a larger vertical field gradient would be present alon

neutral lines where flares often occur.  As mentioned in §1.4 it is at locations such as

near neutral lines where magnetic flux of opposite polarity exist and reconnection is 

highly likely.  Thus, a larger vertical magnetic field gradient may identify those ARs 

in which there are locations where magnetic conditions are primed for flare activity. 

Another parameter selected was the total current of heterogeneity, the compo

of the total current perpendicular to B.  We see f

he current of heterogeneity for flaring ARs is an order of magnitude larger than

flare-quiet ARs.  As discussed in §1.10.4, currents perpendicular to B result in a 

Lorentz force which can add energy to the system.  This availability of additional 

energy can increase the probability of a flare, as our results support.   

Our confidence in DA for flare prediction is also strengthened with the 

the control parameters, seeing and observation angle, from the top parameters 

selected.  Significant reduction to the DF error rate stopped after about the sixth 
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2.6  Comparison to SEC Forecasts 

 

st 

frequency and the frequ

2  forecast 

methods.   

2

assigned to the corresponding bin.  See equation 1.10.  However, a weighted χ2 value 

is not the most appropriate tool for comparing the DF-base probability forecasts to 

iable was added in the step-up procedure.  Seeing was not added until the 16th 

parameter, and observation angle was included as the 31st parameter. 

 To compare how well the DF flare probability forecasting method performs 

against present flare warning systems, we compared the forecast verification plot 

created from the results of our final 5-variable DF discussed in §2.5 to SEC’s foreca

verification plot (§1.7).  The verification plots are shown in Figures 2.10  and 2.11.  

The χ2 value was the tool used for the comparison.  Since we did not have the 

numerical data supporting SEC’s forecast verification plot, we had to visually deduce 

the probability bin populations and the difference between the observed flare 

ency expected for 100% forecast accuracy.  In order to keep 

as many factors as possible identical throughout the comparison of the two forecast 

methods, a visual inspection of the DF probability forecast was also done to 

determine the bin populations and forecast deviations.  We constructed the DF 

probability forecast verification plot with the same size and number of bins as SEC’s 

plot.  See Appendix B for the data used to calculate the χ  values for both

 In our initial calculations of the χ  value for the DF probability forecasts, each 

term in the calculation was weighted by the square-root of the number of ARs 
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SEC’s forecasts due to the gross differences in database size and the fact that some

the bins in the DF forecast verification plot lack a statistically significa

 of 

nt number of 

datapoints.  SEC’s database contains approximately 6500 datapoints, while our 

training sample only contains 1182 datapoints.  Thus, we consider χ2 values 

normalized by the sum of the weighting factors for our comparison (equation 2.20)  

( )( )

∑

∑

=

=

⋅−
=χ

1

12

k
k
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 To avoid the

η
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 If the χ  values are normalized by the sum of the weighting factors (equation 2.20) 

and we only look at the forecast deviations from perfect accuracy, we obtain the 

unweighted χ  value of 1.53 for SEC and 1.67 for the DF forecasts.  From these 

values, it looks as if SEC’s method performs slightly better than the DF forecasts; 

however, the lack of a statistically significant number of datapoints in the higher 

probability bins may contribute to errors in the DF forecasts.  With a bin containing 

few datapoints, we are unable to say whether the bias of the observed frequency of 

flaring is due to a bias in the forecasting method or due to the lack of a statistically 

significant sample.  The datapoints may be outliers and not representative of the true 

AR population described by the probability bin. 

 statistically insignificant bins, we then calculated the χ2 value for 

only the 4 bins with the most datapoints (see Appendix B).  The χ2 value for SEC’s 

forecasts is now 0.16, and the χ  value for the DF forecasts is 0.12.  When we only 

consider statistically significant bins, the DF probability forecasts seem to perform 

better.  However, several differences between the two forecasting methods may 

2
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contribute to the disparities in the forecasting methods.  The daily flare forecasts 

published by SEC are for the entire solar disk and assign a probability of at least one 

flare occurring somewhere on the solar disk; whereas, our DF method assigns a 

probability of flaring to each AR present on the solar disk.  Thus, the datapoi

each verification plot are defined in a slightly different manner.  Furthermore, SEC 

nts for 

produces separate forecasts for M- and X-class flares.  The plot in Figure 2.10, which 

was used in the χ2 calculation for SEC’s forecasts, w

only.  Presently, the DF forecasting method does not distinguish between flare classes 

re 

ed 

on 

as for M-class flare forecasts 

when assigning a probability of flaring.  Consequently, the DF forecast verification 

plot incorporates C-, M-, and X-class flares. 

 Overall, the results show that an objective DF based method for producing fla

probability forecasts may perform as well as the present subjective method employ

by SEC.  To further explore how the methods compare, a more rigorous comparis

should be made in which as many factors are equal or consistent throughout the 

comparison as possible.  For example, it may be insightful to limit the DF forecast 

verification plot to only M-class flares and then make the comparison with SEC.  

Also, a much larger DF sample size is needed to be able to compare the two methods 

across all probability bins.   

79 



 
 

Figure 2.10 - SEC Flare Probability Forecasts Verification Plot 

 
(http://www.sec.noaa.gov/forecast_verification/mFlare.html) 
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Figure 2.11 – 5-Variable DF Flare Probability Forecast Verification Plot 
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3. Discussion and Future Work 

 

3.1  Forecast Versus Modeling Accuracy 

 

 In Sections 2.4 and 2.5, the final list of variables was selected to which the step-

up procedure was applied in order to identify the optimum combination of parameters 

to use for the DF.  The selection tool of choice used in the step-up procedure was the 

Mahalanobis distance due to its consistent results and its reproducibility.  Even 

though we elected to use the Mahalanobis distance in place of the χ2 value, the χ2 

value could have been used.  The results would then need to be viewed in a different 

manner. 

 The Mahalanobis distance is a measure of the separation of the flaring and flare-

quiet AR population means in k-space.  Thus, this distance is a reflection of the 

discriminating power of the DF and the correctness of the AR population models and 

DA assumptions.  The χ2 value, on the other hand, is a measure of flare probability 

forecast accuracy.  If the goal is for forecast optimization and not DF optimization, 

then minimizing the χ2 value would be more useful to the forecaster since the quantity 

measures the deviation of the probability forecasts from actual observations.  Variable 

selection using ables 

roducing the most accurate probability forecast.  This combination of variables 

rily result in the lowest AR misclassification rate or yield the most 

accurate DF.  However, if the goal is to select variables that will optimize the DF and 

population discreteness, then maximizing the Mahalanobis distance may yield better 

the χ2 value would then identify the combination of vari

p

would not necessa
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results.  The DF alone pro roduct, i.e. the AR will 

produce a flare or the AR will be flare-quiet.  Increasing the relative separation of the 

flaring and flare-quiet AR populations may increase population discreteness and may 

decrease possible overlap in the populations in k-space if the in-group variances 

ain constant and do not increase.  This in turn would increase the trustworthiness 

chi-squared value.  However, it is another method of selecting DF variables with 

the goal of optimizing forecast accuracy.  We briefly explored this method of variable 

 

tal 

 

pursue minimizing misclassification rates as a criterion for the step-up procedure. 

duces only a binary flare forecast p

rem

of the DF classification of ARs.   

Another criterion for selecting variables during the step-up procedure that should 

be further investigated in future work is minimizing the rate of misclassification.  The 

DF created from variables selected due to their ability to minimize instances of 

misclassification may or may not yield a forecast verification plot with the smallest 

2χ

selection in our research, and the result of the step-up procedure with the criterion of

minimizing the rate of misclassification was a DF composed of two variables, to

magnetic flux and the kurtosis of the inclination angle.  Due to time constraints and 

our greater confidence in the results of the step-up procedure when the criterion was

minimizing the 2χ value or maximizing the Mahalanobis distance, we decided not to 
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3.2

The most exhaustive and reliable method of identifying the combination of 

variables that would yield the most accurate DF is to calculate the DFs for every 

single-variable, 2-variable, 3-variable, 4-variable… all the way up to… every 147-

variable permutation and select among those countless permutations the best 

com  

cts.   

The task can be made more manageable, as we did in §2.4 and §2.5, by further 

reducing the variable list to only those parameters expected to be among the best 

 

 

er 

ariables.  Discriminant Loadings return a parameter’s simple correlation with the DF 

inant Loadings reflect how a variable alone 

separates the groups disregarding the presence of the other variables.  This is may not 

be desirable since it does not provide information on how variables perform jointly or 

ow the performance of a single variable changes as other parameters are added or 

  Variable Selection Methods  

 

bination of variables.  However, even this method would not be ideal unless all of

the variables were uncorrelated and all DA assumptions were valid.  Nevertheless, the 

time demands of such an undertaking make it unrealistic for most research proje

predictors and to further reduce correlation among variables.  One approach to 

reducing the variable list is to explore different measures of DF variable contribution, 

such as the F-Value, the Partial F-Value, and Discriminant Loadings [Dillon and 

Goldstein, 1984].  F-values are similar to the DF standardized weighting coefficients

and ignore correlation among parameters; thus, they can be misleading.  However, the

Partial F-Value is less affected by variable interdependence.  The Partial F-Value 

shows the separation provided by the variable of interest after adjusting for the oth

v

in a univariate context.  Thus, Discrim

h
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dropped [Rencher, 2002].  As was shown previously, some variables, which alone 

ma ent in some of the better performing 

multivariate DFs.  

ed 

nce the 

parameter correlation and eliminate poor predictors. 

n 

ing 

3.3

 

y not be good predictors, can be pres

The variable contribution measures could be applied to a set of highly correlat

parameters, such as the parameters derived from a given measure of shear, to see 

which measure performs best at selecting among interdependent variables.  O

contribution measure and best predictor from the subset is selected, the remaining list 

of variables or other subsets of interdependent variables could be subjected to the 

chosen contribution measure.  This would, hopefully, reduce redundant variables and 

Another method of selecting DF parameters worth exploring is a step-down 

method, which is similar to the step-up method covered in §2.4.1.  The step-dow

method would begin with all 147 available parameters and would then eliminate the 

one variable that either contributes least to the separation of the groups or to reduc

the error rates.  It would be interesting to see how the step-up and step-down results 

differ with respect to error rates and the ultimate predictors selected.  

 

  Parameter and Population Distributions 

 Two of the assumptions made for our development of the DA were 1)all 

candidate parameters had Gaussian distributions and 2)the flare-quiet and flare-

producing populations had equal covariance matrixes.  We know there are positive-
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definite parameters that can never be truly Gaussian and are aware the covariance 

matrixes of flaring ARs and non-flaring ARs may not be equal.  Better 

characterization of the distributions of the parameters and AR populations would lead 

to g

 

ted to absolute values; thus, 

the  

iscover a 

statistical test to gauge the uncertainty introduced to our results by the violation of the 

assumption that all of the DF parameters had Gaussian distributions.  Identifying such 

 

 

 

reater confidence in DF predictions and parameter selections. 

 An improvement in the model from which DF is created can only improve 

prediction accuracy.  The present DF parameter selection may also change if all of the

candidate variables are represented by the correct distribution.  A parameter presently 

recognized as a poor predictor may have been categorized as such because its true 

distribution may be far from Gaussian.  In the final parameter list used in the step-up 

procedure (§2.4), many of the parameters were restric

ir distributions were far from Gaussian.  However, this does not mean the five

variables selected for use in the DF are not good flare predictors.  If non-Gaussian 

distributions are better able to describe parameter distributions and were applied to 

the appropriate variables during DA, we may see other parameters step up as better 

predictors of solar flares, and we may see a change in the number of parameters 

needed for an adequate DF increase or decrease.  We were unable to d

a test would be helpful for future DA work. 
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3.4

 

 The present data constituting the DA training sample covers the time frame of 

January 2001 to February 2003, which corresponds to the latter half of the 23rd solar 

ect 

ility 

 

3.5  Photosphere Versus Chromosphere 

 

 force free and may not be the source for 

re-flare magnetic signatures.  The currents and magnetic field present in the 

ay not reflect the magnetic conditions in the chromosphere or corona 

where reconnection and relaxation of the magnetic field lines occur and where we 

  Training Sample 

cycle peak occurring at the end of 2000 and beginning of 2001.  Future work is 

needed to expand the training sample data and to incorporate data from other parts of 

the solar cycle.  This should be done to characterize solar magnetic parameters 

throughout a solar cycle and to see if there are solar cycle specific effects with resp

to the parameter distributions.  This will also identify any solar cycle forecast bias.  

Increasing the sample size will also improve the statistical significance of the 

probability forecast verification plots by providing additional data to those probab

bins containing few datapoints. 

 Thresholds for flare production have not been established nor has a unique 

combination of parameters able to specify an AR as flare-quiet or flare-producing 

been identified.  The photosphere may not be

p

photosphere m
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know the magnetic fields are force-free.  For flare-unique conditions, the 

chromosphere may be the next place to search. 

3.6

 

 We have demonstrated discriminant analysis as a means of predicting solar flares 

when applied to photospheric magnetic parameters.  We have also shown the 

importance of a statistically significant training sample to the confidence in DA 

results.  In order to reduce processing time and the interdependence of DF variables, 

we reduced the list of candidate photospheric magnetic parameters to those deemed 

most likely to contribute to solar flare production and eliminated redundant 

parameters and reduced the subset of highly correlated shear parameters.  Although 

e have not identified a combination of parameters unique to flaring ARs, we have 

flare production.  Due to the population of 

flare-quiet ARs being much larger than the population of flare-producing ARs, a rate 

of correct classification of 0.777 can be achieved by predicting every AR to remain 

flare-quiet.  However, the 5-variable DF shown in equation 2.19 obtains a rate of 

correct classification of 0.829. 

ts 

s 

could be improved with the use of more appropriate parameter and AR population 

distributions.  The assumption of Gaussian parameter distributions and populations 

 

  Summary 

w

revealed those conditions necessary for 

We have also shown the performance of objective flare probability forecas

derived from a linear multivariable DF compares to that of the subjective flare 

forecasts produced by SEC.  The performance of the DF-based probability forecast
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with equal covariance matrixes is not always valid.  Invalid assumptions m

for the limiting value of 0.829 for the rate of cor

ay account 

rect classification.  Since less 

strictive assumptions may lead to a non-linear DF, a quadratic DF may be better 

suited for the task of solar flare prediction.  With a better model of solar parameters 

and AR populations it may be possible to identify those conditions and thresholds 

sufficient for flaring and to increase the rate of correct classification. 

re
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Appendix A: List of Candidate Photospheric Magnetic DF Parameters 

 

 

Horizontal 

List of Initial 147 Candidate                               

Photospheric Magnetic Parameters 

magnetic field 

 

energy density 
Excess magnetic 

hB  ε  

 )( hBσ   )(εσ  

 )( hBς   )(ες  

 )( hBκ   )(εκ  

  Total excess 
magnetic energy ∑= dAEtot ε  

Vertical magnetic 
field zB    

 )( zBσ  Horizontal gradient 
of the horizontal 

field 
hhB∇  

 )( zBς   )( hhB∇σ  
 )( zBκ   )( hhB∇ς  

 
zB   )( hhB∇κ  

 )( zBσ  Horizontal gradient 
of the vertical field zhB∇  

 )( zBς   )( zhB∇σ  
 )( zBκ   )( zhB∇ς  

   

Total magnetic 
field 

)( zhB∇κ  

B  Horizontal gradient 
of the total field Bh∇  

 )(Bσ   )( Bh∇σ  

 )(Bς   )( Bh∇ς  

 )(Bκ   )( Bh∇κ  
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Inclination angle γ  Helicity 

ch  

 )(γσ   )( chσ  

 )(γς   )( chς  

 )(γκ   (h )κ c  

   
ch  

∑ ++ =Φ dABz
 

tot  T c 

magnetic polarity 

otal magneti
flux associated 

with each ∑

)( chσ  

−− =Φ dABztot  

 

)( chς  

dABztot ∑=Φ   )( chκ  

Total u ed 
magnet c flux ∑=Φ dABznet   dAhH c

tot
c ∑nsign

i
=  

Net magnetic flux ∑=Φ dABznet  ∑= dAhH c
net
c   

   ∑= dAhH c
net
c  

Twist p eter aram  α   

 ∑ ++ = dAJI z  )(ασ  Vertical curre
each sign 

nt of 

 )(ας   − = dAJI  ∑
 

−
z

)(ακ   −+ += IIItot  

  α  

 

−+ += IIInet  

 )(ασ  

 

−+ += IIInet  

 )(ας   

   )(ακ  

    

Best-fit f -free 
twist parameter 

orce
ffα    

   
ffα  
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ˆ
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Vertical current 
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−−
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net ∑
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=  
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−−
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  dAJI zz B
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 )( cJσ   dAJI zz B
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B
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−−
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  )( cJς  −+

−= zzz B
tot

B
tot

B
tot III  

  −+

+= zzz B
net

B
net

B
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 ∑= dAJI c
tot
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−= zzz B
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B
net

B
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n et
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c  Current of 
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ˆ
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   )( hJσ  

Vertical 
current density )( chz JJJ +=  

 )( hJς  

  )( hJκ  )( zJσ  

  
hJ  )( zJς  

 
 

 )( zJκ
 

)( hJσ  

 )( hJς  
zJ  

 )( zJσ  
 )( hJκ  

 
 

)( zJς  

 

∑= dAJI h
tot
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)( zJκ  
 ∑= dAJI h

net
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net
h  

92 



 
H
sh

orizontal      
ear angle 

3D shear angle 
restricted to     
neutral line 

Hψ  NLψ  

 )  ( Hψσ  

 

)( NLψσ  

)( Hψς   )( NLψς  

 )( Hψκ   )( NLψκ  

  
Hψ   weighted by 

hB  
 

hB  NLψ   weighted by 

 )( NLψσ  weighted by 

hB  

)( Hψσ   weighted 

by hB   

 Area within AR of    Area within AR of 
°> 453Dψ  °> 45NLψ  

 Area within AR of         Area within AR of 
°> 803Dψ  

 Fraction of neutral
line of 

°> 80NLψ  

 

 

 Fraction of neutral line of 

°> 453Dψ
 Fraction of neutral 

line of 

°> 45NLψ  

°> 803Dψ  

 Fraction of neutral line of 
°> 80NLψ  
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3D Shear 

Angle 
H

ang
n

orizontal shear 
le restricted to 
eutral line 

Hψ  D3ψ  

 )  ( 3Dψσ  )( Hψσ  

 )  ( 3Dψς  )( Hψς  

 )  ( 3Dψκ  )( Hψκ  

  
hB  Hψ  D3ψ   weighted by  weighted by 

hB  

 )  ( 3Dψσ   
weighted by 

)( Hψσ  wei

hB  
ghted by 

hB  

 Area within AR of   
 

 Area within AR of   
°> 453Dψ °> 453Dψ  

 Area within AR of         Area within AR of               
°> 803Dψ  °> 803Dψ  

 Fraction of neutral 
line of 

°> 453Dψ  

 Fraction of neutral line of 
°> 453Dψ  

 Fraction of neutral 
line of 

 Fraction of neutral line of 
°> 803Dψ

°> 803Dψ  
    

•  is the unit vector in direction of the field  

 

 b̂
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al Redu ed List of C F Parameters Fin c andidate D
1. Observation angle 24. Bh∇  47. ch  

2. Seeing Parameter 25. )( Bh∇σ  48. )( chσ  

3. 26. totΦ  )( Bh∇ς  49. )( chς  

4. hB  27. )( Bh∇κ  50. )( chκ  

5. )( hBσ  
hJ  51. γ  28. 

6. h )( hJσ  52. )(γσ  (B )ς  29. 

7. )( hJς  53. )(γς  )( hBκ  30. 

8. )(γκ  54. )( hJκ  31. 
zB  

9. )( zBσ  32. I  55. 
tot

ε  h

10. )( zBς  33. 56. net
hI  )(εσ  

11. )(ες  57. )( zBκ  34. zJ  

12. )( zJσ  58. )(εκ  B  35. 
13. )(Bσ  36. )( zJς  59. totE  

14. )(Bς  37. )( zJκ  60. Hψ  

1 . )(B5 κ  38. Itot )( Hψσ  61. 

16. hhB∇  39. Inet 62. )( Hψς  

17. )( hhB∇σ  40. α  63. )( Hψκ  

18. )( hhB∇ς  41. )(ασ  64. Hψ   weighted by B  

19. )( hhB∇κ  42. )(ας  65. )( Hψσ   weighted by 

B  

20. zhB∇  43. )(ακ  66. Area within AR of   
°> 453Dψ  

21. )( zhB∇σ  44. ffα  67. Area within AR of           
°> 803Dψ  

22. )( zhB∇ς  45. dAhH c
tot
c ∑=  68. Fraction of neutral line 

of °> 453Dψ  

23. )( zhB∇κ  46. ∑= dAhH c
net
c  69. Fraction of neutral line of 

°> 803Dψ  
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Appendix B: Flare Forecast Verification Visual χ2 Calculations Data 

SEC FORECASTS 
Probability

lation
Expected minus 

Observed 
Weighted       

Chi-Squared 

 

  

 
Bin 

Bin 
Popu   

0-5 1300 0 0.000E+00   

5-10 500 0 0.000E+00   

10-1  450 0.000E+00   

15-20 250 0 0.000E+00   

20-2  450 0.03 1.909E-02   

25-3  300 0.03 1.559E-02   

30-35 500 0.04 3.578E-02   

35-40 150 0.17 3.540E-01   

40-45 0.11 2.420E-01   

45-5 0.08 5.724E-02   

50-55 500 0.12 3.220E-01   

55-6 0.13 9.998E-02   

0-65 300 0.16 4.434E-01   

65-70 55 0.11 8.974E-02   

70-75 250 0.1 1.581E-01  

75-80 200 0.17 4.087E-01  

80- 5 300 4.33 2   

85-90 40 0.15 1.423E-01   

90-9  150 4.409E-02   

95-100 90 0.02 3.79 3   
 

6300 1.53 2.479 98 
<--- Sums from   

5 0 

5

0

 400 

0 80 

0 35 

6

 

 

8 0.05 0E-0

5 0.06 

5E-0

0794       columns 
 
 

SEC's 4 MOST POPULATED BINS 
Probability 

Bin Bin Population 
Expected 

minus 
Observed 

W te
-

Squared 

0-5 1300 0 0.000E+00 

eigh d     
Chi

5-10 500 0 0.000E+00 

30-35 500 0.04 3.578E-02 

50-55 500 0.12 3
Column 
Sums--> 2800 0.16 3.578E-01 

.220E-01 
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DF PROBABILITY FORECASTS  

Probability B
Population

us Weighted     
Chi-Square  Bin 

in Expected min
Observed 

  
d 

0-5 270 0 0.000E+00  

5-10 2   

 150 5   

5   

5   

   

  

   

   

   

   

  

   

  

   

   

   

  

  

    

5  8 
<--- Sums from 
      co mns 

370 0.0 7.694E-03

10-15 0.0 3.062E-02

15-20 80 0.0 2.236E-02

20-25 50 0.1 1.591E-01

25-30 30 0.07 2.684E-02

30-35 30 0.1 5.477E-02

35-40 30 0.02 2.191E-03

40-45 20 0.15 1.006E-01

45-50 20 0.03 4.025E-03

50-55 20 0.07 2.191E-02

55-60 15 0 0.000E+00

60-65 10 0.17 9.139E-02

65-70 10 0.1 3.162E-02

70-75 15 0.02 1.549E-03

75-80 15 0.17 1.119E-01

80-85 20 0.05 1.118E-02

85-90 20 0 0.000E+00

90-95 20 0.2 1.789E-01

95-100 20 0.25 2.795E-01

 121 1.67 1.13620076 lu
 
 
 

DF's 4 MOST POPULATED BINS 
Expected Weighted     Probability 

Bin Bin Population minus 
Observed 

Chi-
Squared 

0-5 270 0 0.000E+00 

5-10 370 0.02 7.694E-03 

10-15 150 0.05 3.062E-02 

15-20 80 
Column 

0.05 2.236E-02 

Sums--> 870 0.12 6.067E-02 
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